Springen naar inhoud

[wiskunde] kansrekenen


  • Log in om te kunnen reageren

#1

Berrius

    Berrius


  • >25 berichten
  • 74 berichten
  • Ervaren gebruiker

Geplaatst op 17 februari 2009 - 22:30

“Geurt is zijn fietssleuteltje kwijt. Hij heeft een doosje met tien op het oog gelijke reservesleutels, waarvan hij weet dat er twee passende sleutels bij zitten. Hij probeert de sleutels een voor een. Bereken de kans dat hij na vijf keer proberen beide passende sleutels heeft gevonden.”

Ik moet dus berekenen wat P(beide sleutels binnen 6x proberen) is. Ik heb het op de volgende (nogal lange) manier gedaan:
P(1ste sleutel 1ste keer) = 2/10
P(1ste sleutel 2e keer) = 16/90
P(1ste sleutel 3e keer) = 112/720
P(1ste sleutel 4e keer) = 672/5040
P(1ste sleutel 5e keer) = 3360/30240
P(1ste sleutel binnen 6 keer) = LaTeX bovenstaande kansen = 7/9

P(2e sleutel 1ste keer) = 1/9
P(2e sleutel 2e keer) = 8/72
P(2e sleutel 3e keer) = 56/504
P(2e sleutel 4e keer) = 336/3024
P(2e sleutel 5e keer) = 1680/15120
P(2e sleutel binnen 6 keer) = LaTeX bovenstaande kansen = 5/9

P(1e en 2e sleutel binnen 6 keer) = 7/9 * 5/9 = 35/81

Ik wou graag weten of ik dit correct aangepakt heb? En daarnaast of de volgorde niet van belang is? Mocht de volgorde wel van belang zijn dan volgt uit de somregel een kans van 70/81 wat mij toch een beetje hoog lijkt.

Veranderd door Berrius, 17 februari 2009 - 22:33


Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Bvdz

    Bvdz


  • >25 berichten
  • 74 berichten
  • Ervaren gebruiker

Geplaatst op 18 februari 2009 - 02:43

Zoals ik denk dat jij het doet (aangezien er geen berekening bij staat moet ik een beetje gokken :D), heb je 2 sleutels: sleutel 1 en sleutel 2.
Dan:
P(1ste sleutel 1ste keer) = 1 / 10 (aangezien alleen sleutel 1 telt en niet sleutel 2)
en
P(1ste sleutel 2de keer | 1ste sleutel niet 1ste keer) = 1 / 9
..
P(1ste sleutel 5e keer | 1ste sleutel niet 1ste - 4e keer) = 1 / 6

Voor sleutel 2 geldt hetzelfde.

Nu moet je nog uitrekenen:
P(1ste sleutel 1ste keer & 2de sleutel 2de keer) = P(1ste sleutel 1ste keer) * P(2de sleutel 2de keer) = ...
P(1ste sleutel 1ste keer & 2de sleutel 3e keer) = ...
...
P(1ste sleutel 4e keer & 2e sleutel 5e keer = ...

en dan nog een keer met 1ste en 2de sleutel omgekeerd.

Makkelijker is:
Je bent op zoek naar een reeks zoals:
J J O O O
of
J O J O O
enz.

Waarin J een juiste sleutel is en O een onjuiste.

1) Hoeveel mogelijke reeksen zijn er met 2 J's en 3 O's?
2) Hoe groot is de kans op 1 zo'n reeks?
3) Vermenigvuldig het antwoord van 1) en 2).

Of

1) Hoeveel mogelijke reeksen zijn er met 2 J's en 3 O's?
2) Hoeveel mogelijke reeksen zijn er in totaal?
3) Deel het antwoord van 1) door dat van 2).

Veranderd door Bvdz, 18 februari 2009 - 02:46


#3

Bvdz

    Bvdz


  • >25 berichten
  • 74 berichten
  • Ervaren gebruiker

Geplaatst op 18 februari 2009 - 13:20

Tweede deel is iets lastiger dan ik zeg, moet zijn:
Je bent op zoek naar de reeksen:
J J O O O O O O O O
of
J O J O O O O O O O
t/m
O O O J J O O O O O

En dan:
1) Hoeveel mogelijke reeksen zijn er met 2 J's op de eerste vijf plekken?
2) Hoeveel mogelijke reeksen zijn er in totaal?
3) Deel het antwoord van 1) door dat van 2).

PS. sorry voor de dubbelpost, maar ik kan mijn vorige niet meer editen.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures