Springen naar inhoud

Eindige elementenmethode


  • Log in om te kunnen reageren

#1

Twoine

    Twoine


  • 0 - 25 berichten
  • 13 berichten
  • Gebruiker

Geplaatst op 22 maart 2009 - 15:44

Hallo,

Om te beginnen: ik hoop dat dit op het juiste subforum staat, anders verplaatst iemand het maar.

Mijn vraag:

Ik heb in Matlab een programma-code voor de doorbuiging van een balk op 2 steunpunten te berekenen met behulp van eindige elementen.

Ik heb zowel een
- 1D-programma: de elementen zijn dan staafelementen over de lengte van de balk.
- 2D-programma: de elementen zijn dan driehoekige elementen over de lengte en hoogte van de balk.

Wanneer ik de doorbuiging op papier bereken, komt dit overeen met het resultaat van het 1D-programma.
Wanneer ik deze wil berekenen met het 2D-programma, is die doorbuiging zeer sterk afhankelijk van het aantal knooppunten dat ik kies over de hoogte van mijn balk!

Als ik de hoogte van mijn balk onderverdeel in 50 i.p.v. 2 knooppunten, wordt mijn doorbuiging bijna 3x groter!

VRAAG: Heeft iemand hiervoor een verklaring: de verticale doorbuiging is sterk afhankelijk van het aantal gekozen knooppunten over de hoogte bij het werken met driehoekige elementen?

Alvast bedankt!

Mvg.

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 22 maart 2009 - 15:49

Ik denk dat ze bij praktisch & overig technisch meer met dit soort dingen bezig zijn - verplaatst.
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#3

jhnbk

    jhnbk


  • >5k berichten
  • 6905 berichten
  • VIP

Geplaatst op 23 maart 2009 - 19:24

VRAAG: Heeft iemand hiervoor een verklaring: de verticale doorbuiging is sterk afhankelijk van het aantal gekozen knooppunten over de hoogte bij het werken met driehoekige elementen?

Ik denk dat je hier een redeneringsfout maakt. Indien je je balk gaat opdelen in driehoeken krijg je een vakwerk welk niet dezelfde buigstijfheid heeft dan de oorspronkelijke ligger.

Aangezien het sterkteleer betreft heb ik het naar Constructie- en sterkteleer forum verplaatst.
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.

#4

Twoine

    Twoine


  • 0 - 25 berichten
  • 13 berichten
  • Gebruiker

Geplaatst op 23 maart 2009 - 20:14

Dat is inderdaad een hele andere redenering.

Wil dit dan zeggen dat met een model met driehoeken de juiste doorbuiging, spanning, ... niet wordt berekend?

Met het model met lijnelementen komen de resultaten immers wel overeen met de analytische berekeningen.

De conclusie kan toch niet zijn: 1D-model (lijnelementen) werkt, 2D-model (driehoeken) werkt niet. Waarom zou men dan een 2D-model gebruiken?

Weet iemand hier iets meer over?

#5

jhnbk

    jhnbk


  • >5k berichten
  • 6905 berichten
  • VIP

Geplaatst op 23 maart 2009 - 22:06

Ik weet niet welke methode je als 1D gebruikt maar als je een analytische berekening maakt wordt een ligger ook als ťťn lijn beschouwd. Met ťťn 2D methode met driehoeken verander je, zoals al gezegd de buigstijfheid. Mogelijk kan een 2D methode met rechthoeken (twee horizontale lijnen met verticale verbindingen op gelijke afstanden met uiteraard inklemmingen) wel de juiste oplossing bieden. Echter, is dat veel meer rekenwerk dan ťťn 1D methode.
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.

#6

rodeo.be

    rodeo.be


  • >250 berichten
  • 647 berichten
  • Ervaren gebruiker

Geplaatst op 23 maart 2009 - 22:27

welk algoritme gebruik je? Zelfgemaakt? Kan je verduidelijken welke theorie je gebruikt? Hoe zet je de stijfheid van een balk om in een verdeling in driehoekjes? Wellicht zit daar de fout.

Veranderd door rodeo.be, 23 maart 2009 - 22:29

???

#7

janii

    janii


  • 0 - 25 berichten
  • 4 berichten
  • Gebruiker

Geplaatst op 24 maart 2009 - 00:04

Het is misschien het beste dat je eens je volledige code van 1-d en 2-d (m-files, ...) eens post of doormailt en eventuele berekeningen op papier.

Dan kan ik eens kijken waar er eventuele (redenerings) fouten zitten.
Je kan mij altijd mailen op janii007@hotmail.com

#8

Twoine

    Twoine


  • 0 - 25 berichten
  • 13 berichten
  • Gebruiker

Geplaatst op 24 maart 2009 - 09:54

De volledige code met al zijn subprogramma's is nogal veel om door te sturen.

Ik zal proberen te verduidelijken hoe het 2D-model werkt. Dit heb ik trouwens niet zelf gemaakt, maar ooit van een docent gekregen.

Bij het begin van het programma geef je de parameters van de balk in (LxBxH) en de materiaalparameters (E-modulus en Poisson factor). Vervolgens ook het aantal knooppunten over de lengte en over de hoogte. Het programma maakt vervolgens een raster waarbij hij bepaalde knooppunten verbindt, tot vorming van allemaal driehoekjes.

De verdeelde last die op de balk wordt geplaatst, wordt omgezet in puntlastjes op elk knooppunt. De driehoekjes ondergaan hierdoor een verplaatsing.

A.d.h.v. deze verplaatsing, de doorbuiging dus, wordt nadien de rek en daarna de spanning bepaald.

In bijlage heb ik een grafiek gestoken. Hij laat de doorbuiging zien. Er zijn 3 knooppunten over de hoogte gebruikt. Wanneer er 6 gebruikt worden, neemt de doorbuiging toe van 120 mm (3 knopen) tot 170 mm (6 knopen).
(Die van 6 knooppunten kon ik niet meer uploaden - te groot)

Bijgevoegde miniaturen

  • 3_knopen.jpg

#9

DePurpereWolf

    DePurpereWolf


  • >5k berichten
  • 9240 berichten
  • VIP

Geplaatst op 24 maart 2009 - 10:47

In de hoogte moet het inderdaad niet zoveel uitmaken. Dus, drie opdelingen zou genoeg moeten zijn. Maar dit hangt af van welke code je gebruikt

Maar, bij elke oneindige elementen berekeningen is het zo dat het moet convergeren naar een enkele oplossing als je de hoeveelheid elementen vergroot. Als dit niet gebeurt is er iets mis met je code.
Dus, als 3 lagen 120 geeft,
en 6 lagen 170
en 9 lagen 180
en 12 lagen 185
en 24 lagen 187
en 26 lagen 187.8
en 260 lagen 187.81123
etc. etc.

Dan is de code toch correct, en zou ik de 2D benadering aannemen.

Als het echter niet convergeert, dus we gaan van 120 naar 150 naar 190 naar 260 naar 300, etc. etc. Dan moet je het niet vertrouwen.

Ik zou zelf ook niet de driehoeks mesh hebben gebruikt, maar voor een manhattan mesh hebben gekozen.

#10

Twoine

    Twoine


  • 0 - 25 berichten
  • 13 berichten
  • Gebruiker

Geplaatst op 24 maart 2009 - 11:05

Het is bij mijn model inderdaad zo dat de doorbuiging convergeert naar een bepaalde waarde. Dus het model zal wel correct werken.

Maar hoe kan dit verklaard worden? Waarom verandert de doorbuiging bij het wijzigen van het aantal knooppunten in de hoogte?

En bovendien, ook al geeft dat model dan toch de correcte waarde, waarom komt deze dan niet overeen met de analytisch berekende waarde? Stel je wilt bij het ontwerp van een gebouw de doorbuiging van die balk weten. Dan is dat model totaal onbruikbaar?

Veranderd door Twoine, 24 maart 2009 - 11:08


#11

jhnbk

    jhnbk


  • >5k berichten
  • 6905 berichten
  • VIP

Geplaatst op 24 maart 2009 - 11:17

Kan je hier wat voorbeelden posten met verschillende op delingen en bijhorende waardes? Welke methode gebruik je trouwens om die doorbuiging van het vakwerk te berekenen?

EDIT: heb je hier iets aan?
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.

#12

Twoine

    Twoine


  • 0 - 25 berichten
  • 13 berichten
  • Gebruiker

Geplaatst op 24 maart 2009 - 12:52

Voorbeeld

H = 250 mm
L = 5000 mm
B kan niet ingegeven worden, ik veronderstel een eenheidsbreedte?
E = 30000 MPa
Poisson = 0.2

Aantal knopen over de lengte: 100

Aantal knopen over de hoogte:

- 2: doorbuiging = -66,64 mm
- 5: doorbuiging = -177,08 mm
- 10: doorbuiging = -194,55 mm
- 100: doorbuiging = -199,35 mm

U vraagt de methode om de doorbuiging van het wakwerk te berekenen? Mag je dat wel beschouwen als een vakwerk?
De doorbuiging wordt als volgt berekend:

Er geldt dat: {f} = [k].{u}

met
{f} = optredende krachten
[k] = stijfheidsmatrix
{u} = verplaatsing

Dit wordt opgelost door het programma naar {u}.

#13

janii

    janii


  • 0 - 25 berichten
  • 4 berichten
  • Gebruiker

Geplaatst op 24 maart 2009 - 13:41

Ik ben met hetzelfde onderwerp bezig maar dan 2D omzetten naar 1D.
Mijn 2D programma werkt perfect, maar 1D nog niet helemaal.
Zou je de main.m en de randvoorwaarden van 1D kunnen posten?
Zo kunnen we elkaar helpen.

Alvast bedankt

#14

jhnbk

    jhnbk


  • >5k berichten
  • 6905 berichten
  • VIP

Geplaatst op 24 maart 2009 - 16:04

B kan niet ingegeven worden, ik veronderstel een eenheidsbreedte?

Hoe bereken je dan je doorbuiging in 1D? Deze hangt toch af van het traagheidsmoment?
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.

#15

Twoine

    Twoine


  • 0 - 25 berichten
  • 13 berichten
  • Gebruiker

Geplaatst op 24 maart 2009 - 16:08

In 1D kan de breedte wel worden ingegeven.

Het traagheidsmoment I, samen met de lengte L en de elasticiteitsmodulus E zit vervolgens vervat in de stijfheidsmatrix [k].

Veranderd door Twoine, 24 maart 2009 - 16:09






0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures