Springen naar inhoud

Lagrange multipliers


  • Log in om te kunnen reageren

#1

proto-guybaa2

    proto-guybaa2


  • >25 berichten
  • 86 berichten
  • Ervaren gebruiker

Geplaatst op 04 mei 2009 - 15:48

Zijn er een verzameling V deelverzameling van R^2 en een continu differentieerbare functie h: R^2 R te vinden, zodanig dat h beperkt tot V in precies 2 punten een minimum aanneeemt geen maximum en verder geen ander kritiek punt?

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

*_gast_PeterPan_*

  • Gast

Geplaatst op 04 mei 2009 - 21:43

Ja, dat kan.
Neem b.v. voor LaTeX de verzameling
LaTeX

en LaTeX

#3

proto-guybaa2

    proto-guybaa2


  • >25 berichten
  • 86 berichten
  • Ervaren gebruiker

Geplaatst op 05 mei 2009 - 11:31

Mag ik vragen hoe je aan deze functie bent gekomen?

#4

Phys

    Phys


  • >5k berichten
  • 7556 berichten
  • VIP

Geplaatst op 05 mei 2009 - 12:17

Heb je een plaatje gemaakt? Weet je hoe V eruit ziet?
Never express yourself more clearly than you think.
- Niels Bohr -

#5

proto-guybaa2

    proto-guybaa2


  • >25 berichten
  • 86 berichten
  • Ervaren gebruiker

Geplaatst op 05 mei 2009 - 12:22

Nee helaas niet. Heb hiervoor mathematica voor nodig. In het bijzonder de functies implicitplot en contourplot.

#6

TD

    TD


  • >5k berichten
  • 24095 berichten
  • VIP

Geplaatst op 05 mei 2009 - 12:27

Je weet dat een continue functie op een gesloten en begrensde verzameling steeds een minimum en maximum aanneemt, de clue zit er dus in om een open verzameling te beschouwen - zie je hoe dat cruciaal is in het voorbeeld van PeterPan? Anders zou er namelijk ook een maximum aangenomen worden.
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#7

Phys

    Phys


  • >5k berichten
  • 7556 berichten
  • VIP

Geplaatst op 05 mei 2009 - 12:28

Volgens mij onderschat je jezelf, of je hebt nog niet geprobeerd.
Als ik schrijf LaTeX , waar denk je dan aan?
Never express yourself more clearly than you think.
- Niels Bohr -

#8

proto-guybaa2

    proto-guybaa2


  • >25 berichten
  • 86 berichten
  • Ervaren gebruiker

Geplaatst op 05 mei 2009 - 13:42

Volgens mij onderschat je jezelf, of je hebt nog niet geprobeerd.
Als ik schrijf LaTeX

, waar denk je dan aan?


dan denk ik aan een cirkel. Maar maximalisatie hierop kan toch toch ook een minimum en maximum opleveren?

#9

Phys

    Phys


  • >5k berichten
  • 7556 berichten
  • VIP

Geplaatst op 05 mei 2009 - 13:47

dan denk ik aan een cirkel.

Zo zie je maar, je hebt niet altijd Mathematica nodig om een verzameling te tekenen. Maar goed, hoe de verzameling er precies uitziet is niet zo belangrijk, belangrijker is het feit ze open is. Je kent de maximum-minimumstelling? Zie TD's bericht.
Never express yourself more clearly than you think.
- Niels Bohr -

#10

TD

    TD


  • >5k berichten
  • 24095 berichten
  • VIP

Geplaatst op 05 mei 2009 - 13:48

dan denk ik aan een cirkel. Maar maximalisatie hierop kan toch toch ook een minimum en maximum opleveren?

De vergelijking x²+y²=r² stelt een cirkel met middelpunt (0,0) en straal r voor, x²+y²<r² is het gebied dat binnen de cirkel gelegen is (dus een open schijf). Als je nu een functie neemt die in het interne van de schijf een minimum heeft en (monotoon) stijgend is naar (en voorbij) de rand van de cirkel: dan heb je geen maximale waarde op de open schijf. Een maximum zou wel bereikt worden op de rand, maar die zit niet in je V.
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#11

TD

    TD


  • >5k berichten
  • 24095 berichten
  • VIP

Geplaatst op 05 mei 2009 - 14:17

Voor het inzicht: kijk even een dimensie lager naar functies van één veranderlijke.

De functie met voorschrift f(x) = x bereikt:
- geen minimum en geen maximum op (0,1)
- een minimum (nl. f(0)=0) maar geen maximum op [0,1)
- geen minimum maar wel een maximum (nl. f(1)=1) op (0,1]
- een minimum en een maximum op [0,1]

Snap je dit en zie je het verband met het interval (open/gesloten zijn) waarop we f definiëren? Nu zou je f ook kunnen definiëren op een unie van twee intervallen die allebei zo gekozen zijn dat f op elk interval wél een minimum maar geen maximum bereikt, bijvoorbeeld op [0,1) U [2,3). Begrijp je deze "truc" en zie je nu in hoe je dit kan uitbreiden naar functies van twee veranderlijken? Bekijk daarvoor bijvoorbeeld volgende grafiek:

Geplaatste afbeelding
"Malgré moi, l'infini me tourmente." (Alfred de Musset)





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures