Springen naar inhoud

Concaviteit


  • Log in om te kunnen reageren

#1

proto-guybaa2

    proto-guybaa2


  • >25 berichten
  • 86 berichten
  • Ervaren gebruiker

Geplaatst op 07 mei 2009 - 11:27

Laat van f : R pijl naar rechts R bekend zijn dat f differentieerbaar is, dat f(0)=1 en dat f'(0) kleiner of gelijk is aan 1.

Als verder bekend is dat f concaaf is, laat zien dat f een nulpunt heeft; dat wil zeggen, laat zien dat er een a element van R is zodanig dat f(a)=0.

Als alleen maar bekend is dat f psuedo-concaaf is, volgt daar nog steeds uit dat f een nulpunt heeft? Zo ja , geef een bewijs, zo nee, geef een beargumenteerd tegenvoorbeeld.

Geef een voorbeeld van een functie f: R^2 pijl naar rechts R die niet convex is, maar wel quasi convex is.

Wat ik zelf heb uitgevogeld is het volgende:

- elke convexe functie is quasiconvex. Op wikipedia staat dat de floor functie quasiconvex is maar niet convex. Maar ik ben eigenlijk meer op zoek naar een simpelere voorbeeld.

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.




0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures