Springen naar inhoud

[wiskunde] kansberekening


  • Log in om te kunnen reageren

#1

ACMilan

    ACMilan


  • >100 berichten
  • 136 berichten
  • Ervaren gebruiker

Geplaatst op 03 juli 2009 - 15:47

Opgave :
De kans meisje/jongen is 1/1
Van een bepaald gezin weet je dat ze 3 kinderen hebben waaronder 1 meisje.
Bereken de kans dat de andere 2 kinderen jongens zijn.

Het antwoord zou 3/7 zijn maar ik vind het nooit. Ik heb al Bayes en Totale Kans gebruikt (aangezien het een voorwaardelijke kans is, denk ik toch) maar wat ik doe, ik kom er nooit uit.

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

JohnB

    JohnB


  • >250 berichten
  • 711 berichten
  • VIP

Geplaatst op 03 juli 2009 - 15:50

Opgave :
De kans meisje/jongen is 1/1


Huh? Ik denk dat je bedoelt: de kans op een meisje en een jongen is gelijk aan 0,5.

Nu zeg je dat het gelijk is aan 1. Dus dan zou je altijd een meisje én een jongen hebben!

#3

ACMilan

    ACMilan


  • >100 berichten
  • 136 berichten
  • Ervaren gebruiker

Geplaatst op 03 juli 2009 - 16:14

Huh? Ik denk dat je bedoelt: de kans op een meisje en een jongen is gelijk aan 0,5.

Nu zeg je dat het gelijk is aan 1. Dus dan zou je altijd een meisje én een jongen hebben!

Ja sorry, de notatie was 1:1 wat dus inderdaad slaat op elk 50%.

#4

yoralin

    yoralin


  • >100 berichten
  • 194 berichten
  • Ervaren gebruiker

Geplaatst op 03 juli 2009 - 16:17

P( er zijn precies 2 jongens bij die drie | er zijn geen drie jongens)

#5

ACMilan

    ACMilan


  • >100 berichten
  • 136 berichten
  • Ervaren gebruiker

Geplaatst op 03 juli 2009 - 18:43

P( er zijn precies 2 jongens bij die drie | er zijn geen drie jongens)

Maar als je deze dan uitrekent met de formule
P(A|B) = P(A d B)/P(B) (d=doorsnede)
Wat krijg je dan bij de doorsnede ? want bij er zijn geen 3 jongens zijn het er toch 1 of 2 ?

Sorry voor al de vragen maar kansrekenen is ogenschijnlijk mijn ding niet meer.

#6

Klintersaas

    Klintersaas


  • >5k berichten
  • 8614 berichten
  • VIP

Geplaatst op 03 juli 2009 - 18:51

Misschien niet zo elegant, maar gezien het beperkte aantal mogelijkheden kun je dit even snel uitschrijven. Er zijn drie kinderen, dus acht mogelijkheden wat betreft het geslacht:
  • meisje/meisje/meisje
  • meisje/meisje/jongen
  • meisje/jongen/meisje
  • jongen/meisje/meisje
  • meisje/jongen/jongen
  • jongen/meisje/jongen
  • jongen/jongen/meisje
  • jongen/jongen/jongen
De laatste schrappen we alvast, omdat we weten dat er zeker één meisje bij is. Er blijven zeven mogelijkheden over en drie daarvan zijn goed.

Veranderd door Klintersaas, 03 juli 2009 - 18:51

Geloof niet alles wat je leest.

Heb jij verstand van PHP? Word Technicus en help mee om Wetenschapsforum nog beter te maken!


#7

yoralin

    yoralin


  • >100 berichten
  • 194 berichten
  • Ervaren gebruiker

Geplaatst op 03 juli 2009 - 19:02

Maar als je deze dan uitrekent met de formule
P(A|B) = P(A d B)/P(B) (d=doorsnede)
Wat krijg je dan bij de doorsnede ? want bij er zijn geen 3 jongens zijn het er toch 1 of 2 ?

Doorsnede : er zijn precies 2 jongens bij die drie en er zijn geen drie jongens = er zijn precies 2 jongens bij die drie.
M.a.w. : A is een deelverzameling van B en je hebt hier P(A)/P(B) nodig.
P(A) = 3/8 en P(B) = 1 - P(alle 3 jongens) = 1 - (1/8) = 7/8.

Veranderd door yoralin, 03 juli 2009 - 19:07


#8

ACMilan

    ACMilan


  • >100 berichten
  • 136 berichten
  • Ervaren gebruiker

Geplaatst op 03 juli 2009 - 19:33

Misschien niet zo elegant, maar gezien het beperkte aantal mogelijkheden kun je dit even snel uitschrijven. Er zijn drie kinderen, dus acht mogelijkheden wat betreft het geslacht:

  • meisje/meisje/meisje
  • meisje/meisje/jongen
  • meisje/jongen/meisje
  • jongen/meisje/meisje
  • meisje/jongen/jongen
  • jongen/meisje/jongen
  • jongen/jongen/meisje
  • jongen/jongen/jongen
De laatste schrappen we alvast, omdat we weten dat er zeker één meisje bij is. Er blijven zeven mogelijkheden over en drie daarvan zijn goed.

Dus dan moet je ook aannemen dat de volgorde belangrijk is en waarom zou ik dat dan moeten doen ?

De methode die ik nu heb gebruikt (en de juiste oplossing geeft) is de volgende :

Verzamelingen :
A0 : 0 jongens
A1 : 1 jongen
A2 : 2 jongens
A3 : 3 jongens
M : 1 meisje

Bayes :

P(A2|M) = P(M|A2) x P(A2) / [ P(M|A0) x P(A0) + P(M|A1) x P(A1) + P(M|A2) x P(A2) + P(M|A3) x P(A3) ]

Waarbij P(M|A2) = 1/2 (1 kind en de kans op een meisje is 1/2)
P(A2) = 1/4 (2 kinderen, kans op 2 jongens is 0.5 dus 2 jongens 0.5 x 0.5)
P(M|A0) = 0 (de kans op slechts 1 meisjes met 0 jongens is 0 aangezien er ZEKER 3 meisjes zijn)
P(M|A1) = 1/3 (IEMAND DIE DEZE WISKUNDIG KAN AANTONEN ? ik heb het gedaan met JJ, MM, MJ dus 1 kans op 3)
P(M|A3) = 0 (er zijn 3 jongens van de 3 kinderen dus geen kans op een meisje)

Je krijgt dus

P(A2|M) = (1/8) / (24/7)
= 24 / 56
= 3/7

Kan iemand zien of mijn redenering klopt ? Want ik ben er nu eenmaal niet 100% zeker van.
Ook weet ik eigelijk niet goed wanneer je eigelijk Bayes en wanneer je totale kans moet gebruiken, is hier misschien een regel voor ?

Bij voorbaat bedankt

#9

Klintersaas

    Klintersaas


  • >5k berichten
  • 8614 berichten
  • VIP

Geplaatst op 04 juli 2009 - 12:00

Dus dan moet je ook aannemen dat de volgorde belangrijk is en waarom zou ik dat dan moeten doen ?

Dat kun je afleiden uit de vraagstelling. Het ouderpaar heeft drie kinderen, waaronder één meisje. Er staat niet dat hun eerste kind een meisje was, dus moet je de volgorde in rekening brengen. Mocht dit wel in de opgave gestaan hebben, dan is de kans natuurlijk 1/4 (MMM, MJM, MMJ, MJJ).

Ook weet ik eigelijk niet goed wanneer je eigelijk Bayes en wanneer je totale kans moet gebruiken, is hier misschien een regel voor ?

Eenvoudig voorbeeld: vier machines vervaardigen een bepaald onderdeel van een toestel en staan allevier in voor 25% van de productie. De kans dat een stuk afkomstig van de eerste machine defect is, is P(M1), de kans dat een stuk afkomstig van de tweede machine defect is, is P(M2), de kans dat een stuk afkomstig van de derde machine defect is, is P(M3) en de kans dat een stuk afkomstig van de vierde machine defect is, is P(M2). Indien nu gevraagd wordt:
  • Bereken de kans dat een lukraak gekozen onderdeel defect is, dan gebruik je de wet op de totale kans;
  • Bereken de kans dat een defect onderdeel afkomstig is van machine 1, 2, 3 of 4, dan gebruik je de regel van Bayes.
In het tweede geval wordt er naar een voorwaardelijke kans gevraagd (wat is de kans dat het onderdeel afkomstig is van die machine op voorwaarde dat het defect is).

Geloof niet alles wat je leest.

Heb jij verstand van PHP? Word Technicus en help mee om Wetenschapsforum nog beter te maken!


#10

Fons

    Fons


  • >100 berichten
  • 165 berichten
  • Ervaren gebruiker

Geplaatst op 27 juli 2009 - 14:47

Misschien niet zo elegant, maar gezien het beperkte aantal mogelijkheden kun je dit even snel uitschrijven. Er zijn drie kinderen, dus acht mogelijkheden wat betreft het geslacht:

  • meisje/meisje/meisje
  • meisje/meisje/jongen
  • meisje/jongen/meisje
  • jongen/meisje/meisje
  • meisje/jongen/jongen
  • jongen/meisje/jongen
  • jongen/jongen/meisje
  • jongen/jongen/jongen
De laatste schrappen we alvast, omdat we weten dat er zeker één meisje bij is. Er blijven zeven mogelijkheden over en drie daarvan zijn goed.



Uit deze redenering blijkt dat er verschil bestaat tussen J M M en M M J. Vanwaar dat verschil? Hoe kan ik dat 'aan de opgave' zien?

Alvast bedankt!

Fons

Veranderd door Fons, 27 juli 2009 - 14:49


#11

Rogier

    Rogier


  • >5k berichten
  • 5679 berichten
  • VIP

Geplaatst op 27 juli 2009 - 15:46

Uit deze redenering blijkt dat er verschil bestaat tussen J M M en M M J. Vanwaar dat verschil? Hoe kan ik dat 'aan de opgave' zien?

Dat kan je niet, het is maar net welke benadering je zelf het handigst vindt.

Je kunt ervoor kiezen om de mogelijkheden te onderscheiden met inachtneming van de volgorde van de achtereenvolgens geboren kinderen. Dan zijn JMM en MMJ twee verschillende mogelijkheden. Al dat soort mogelijkheden hebben dezelfde kans (1/8).

Je kunt er ook voor kiezen om niet op de volgorde te letten. JMM en MMJ zijn dan één en dezelfde combinatie, namelijk "1 jongen, 2 meisjes". Dit soort mogelijkheden hebben niet allemaal dezelfde kans (zo heeft bijvoorbeeld de combinatie "1 jongen + 2 meisjes" een grotere kans dan "0 jongens + 3 meisjes").
In theory, there's no difference between theory and practice. In practice, there is.

#12

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 27 juli 2009 - 16:16

Ter aanvulling (omdat dit vaak niet goed begrepen wordt...): die kansen in dat tweede geval zijn niet gelijk omdat je maar op één manier drie meisjes kan hebben (namelijk M, weer M en nóg eens M) terwijl je op verschillende manieren aan twee meisjes en een jongen kan geraken (JMM, MJM, MMJ). De kans op twee meisjes en een jongen is dus drie keer zo groot dan de kans op drie meisjes!
"Malgré moi, l'infini me tourmente." (Alfred de Musset)





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures