Springen naar inhoud

Boogvorm


  • Log in om te kunnen reageren

#1

plukk

    plukk


  • 0 - 25 berichten
  • 11 berichten
  • Gebruiker

Geplaatst op 01 augustus 2009 - 16:39

Uit de mechanica weten we dat een rechte ligger met een gelijkmatige belasting een paraboolvorminge momentenlijn geeft. dit is te berekenen door de dubbel intergraal over de belasting te nemen. (zie bijlage geval 1)

als we een parabool vormige ligger nemen betekend dit dat we een momentenlijn krijgen die gelijk is aan nul. (geval 2)

nu ben ik op zoek naar een boogvorm die bij geval 3 ook een moment is nul geeft.

het interesante van het geval is dat de belasting beÔnvloed wordt door de vorm van het systeem en daar de momentenlijn de dubbel intergraal is zoek ik dus naar een vorm die na dubbel geintergreerd te zijn de zelfde vorm overhoud iets met sin, cos of een natuurlijke logaritme.

wie kan me op weg helpen.

plukk

boog.JPG

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

thermo1945

    thermo1945


  • >1k berichten
  • 3112 berichten
  • Verbannen

Geplaatst op 01 augustus 2009 - 17:04

Ik houd het op de kettinglijn.

#3

plukk

    plukk


  • 0 - 25 berichten
  • 11 berichten
  • Gebruiker

Geplaatst op 01 augustus 2009 - 17:55

dat van die kettinglijn klopt voor geval 2 (ik maakte de zelfde fout als Galileo Galilei), maar deze is niet rechtstreeks te gebruiken voor een "ketting"met varierende massa. misschien kan je me een beetje op weg helpen om de massa in de afleiding toe te voegen.

#4

jhnbk

    jhnbk


  • >5k berichten
  • 6905 berichten
  • VIP

Geplaatst op 01 augustus 2009 - 20:54

als we een parabool vormige ligger nemen betekend dit dat we een momentenlijn krijgen die gelijk is aan nul. (geval 2)

;) Laat eens zien hoe je hier aan komt?

Verplaatst naar Constructie- en sterkteleer
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.

#5

oktagon

    oktagon


  • >1k berichten
  • 4502 berichten
  • Verbannen

Geplaatst op 02 augustus 2009 - 12:47

Je hebt in de twee eerste gevallen een gelijkmatig verdeelde belasting.

In het derde geval krijg je ,zoals je tekening laat zien een een gelijkmatige belasting met de waarde in het midden doorlopende dus over de gehele constructie en daarbij een parabolisch toenemende belasting vanuit het midden naar beide zijden.

Je zou het systeem om te beginnen kunnen vereenvoudigen,door in het midden een belasting gelijk aan nul te nemen en dan parab.toenemend naar beide zijden en apart de gelijkm.belasting die je in geval 2 hebt,daartoe te voegen.

Ik neem aan dat mijn antwoord nog niet een eindresultaat geeft,ik ea.proberen je op weg te helpen;je zult moeten kluiven.

#6

rodeo.be

    rodeo.be


  • >250 berichten
  • 647 berichten
  • Ervaren gebruiker

Geplaatst op 03 augustus 2009 - 19:05

zeer interessante vraag. Ik zal er even naar kijken ;-)
???

#7

rodeo.be

    rodeo.be


  • >250 berichten
  • 647 berichten
  • Ervaren gebruiker

Geplaatst op 03 augustus 2009 - 23:21

Een aanzet.
Geplaatste afbeelding

LaTeX (noem de integraalterm hier verder ξ; Ra is hier natuurlijk de linkse reactiekracht, of de helft van de totale kracht op de ligger)
LaTeX (met het integraalteken wordt hier de primitieve functie bedoeld)
LaTeX
Zie figuur: LaTeX . Vul dit in, hoe rekening met u(0)=u(1)=0 en je krijgt een differentiaalvergelijking in u(x) met hopelijk een deftige oplossing ;)

Veranderd door rodeo.be, 03 augustus 2009 - 23:26

???

#8

jhnbk

    jhnbk


  • >5k berichten
  • 6905 berichten
  • VIP

Geplaatst op 06 augustus 2009 - 08:03

Je maakt het volgens mij moeilijker dan het is. Ik ga uit van de door jouw gegeven figuur. Daar is LaTeX en dus LaTeX met als reactiekrachten LaTeX

LaTeX waarbij tussen de haakjes de eerste term de totale kracht is links van de gemaakte snede op positie x, vermenigvuldigd met de afstand tot de snede van het aangrijpingspunt van de resultante.

LaTeX

met q=h=1 geeft dit deze grafiek




PS: deze uitwerking vroeg in de ochtend uiteraard onder voorbehoud van fouten.
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.

#9

rodeo.be

    rodeo.be


  • >250 berichten
  • 647 berichten
  • Ervaren gebruiker

Geplaatst op 06 augustus 2009 - 20:40

Ik dacht dat de vraag was "bepaal het verloop van een kromme u(x) zodat er geen moment in de ligger werkt als die rare belasting erop werkt, ttz dat M(x) evenredig is met u(x)". We hebben beide iets anders berekend.

Je zoekt dus het profiel van de boog, u(x) is gezocht
de belasting die daarmee vasthangt is q(x)=Q-u(x)
bereken daarvan M(x)
M(x) moet evenredig zijn met u(x), dan zijn er geen momenten in de boog

jhnbk, we hebben beide een andere formule bij de berekening van M(x) uitgaande een willekeurige q(x): jij hebt er twee extra integalen staan, ik LaTeX ). Ik kan in geen van beide formules een fout vinden ;)
???

#10

plukk

    plukk


  • 0 - 25 berichten
  • 11 berichten
  • Gebruiker

Geplaatst op 06 augustus 2009 - 23:11

ik had niet gedacht in zo'n korte tijd zo veel reacties te krijgen. Ik vind het erg leuk dat ik met mijn vraagstukje zoveel mensen aanspreek. Ik ben (helaas/heerlijk) aan het reizen zodat ik gebruik moet maken van internetcafe's zodat ik niet alle dagen kan kijken, maar het boeit me geweldig. Het is inderdaad zoals Rodeo.be schets het idee een moment vrije boog te kreŽren. Vanaf maandag kan ik weer volop mee doen (wel met de boeken er naast).
WAT FANTASTISCH FORUM IS DIT !!!!!!!!!!!! ;) hier blijf ik plakken. plukk

#11

plukk

    plukk


  • 0 - 25 berichten
  • 11 berichten
  • Gebruiker

Geplaatst op 24 augustus 2009 - 16:55

Een aanzet.
Geplaatste afbeelding

LaTeX

(noem de integraalterm hier verder ξ; Ra is hier natuurlijk de linkse reactiekracht, of de helft van de totale kracht op de ligger)
LaTeX (met het integraalteken wordt hier de primitieve functie bedoeld)
LaTeX
Zie figuur: LaTeX . Vul dit in, hoe rekening met u(0)=u(1)=0 en je krijgt een differentiaalvergelijking in u(x) met hopelijk een deftige oplossing ;)


hallo Romeo.be
Ra staat buiten je intergraal, terwijl ik meen dat dit ook een afhankelijke is.
Zou je voor mij het een en ander wat meer gedetaileerd willen toelichten b.v. wat is r ? en zo

met dank, plukk

#12

rodeo.be

    rodeo.be


  • >250 berichten
  • 647 berichten
  • Ervaren gebruiker

Geplaatst op 26 augustus 2009 - 20:01

hallo Romeo.be
Ra staat buiten je intergraal, terwijl ik meen dat dit ook een afhankelijke is.

ik heb ondersteld dat het een symmetrische belasting is, dus Ra=Rb

er wordt geÔntegreerd over r, r loopt van het begin van de balk (x=0) tot x en geeft zo het moment aan in de snede voor x=x.
Stel, x=L/4, je integraal start dan van de ene zijde (r=0) tot aan de andere zijde (r=x). Bijv. voor r=0: bijdrage aan het moment is q(r)(x-r) = q(0).(x-0) (klopt!). Bijv. voor r=x: bijdrage telt niet mee (lastarm = 0 dus geen momentsbijdrage)

Veranderd door rodeo.be, 26 augustus 2009 - 20:07

???

#13

plukk

    plukk


  • 0 - 25 berichten
  • 11 berichten
  • Gebruiker

Geplaatst op 26 augustus 2009 - 21:44

boog_Model.jpg

hallo Romeo.be
ik heb me gebrekkig uitgedrukt wat ik mis is de horizontale component. zonder dat wordt het een ligger op twee steunpunten en die buigt altijd door.
ik heb een nieuw opzetje gemaakt zie tek.ingezoemd op het midden.
ρ= s.m.
ho = hoogte boven het middelpunt

ik weet dat in het midden de dwarskracht en het moment nul is, dus blijft alleen Fh
verder weet ik dat in elk punt x van de boog de afgeleide van y = vector optelling Fv+Fh

Σ Fh = 0 => Fh = Fh
Σ Fv = 0 =>ρ*ho*x +ρ*LaTeX ydx - Fv(x) = 0 intergratiegrenzen {0...x}
Σ M = 0 => ρ*LaTeX ((ho+y)*x*dx)+Fh*y-Fv*x = 0 intergratiegrenzen {0...x}

verder geld nog tan (Fv/Fh) = y'

ho; Fh; ρ zijn gekozen constanten.

klopt dit ??

en nu nog een wiskunde wonder die y er uit haalt.

plukk

#14

plukk

    plukk


  • 0 - 25 berichten
  • 11 berichten
  • Gebruiker

Geplaatst op 07 september 2009 - 22:58

is er niemand die mij hier verder mee kan helpen ?? :eusa_whistle:

met dank,

plukk..

#15

jhnbk

    jhnbk


  • >5k berichten
  • 6905 berichten
  • VIP

Geplaatst op 08 september 2009 - 08:32

Je zoekt dus een krachtencombinatie zodat de ligger (in boogvorm) niet doorbuigt? Mij lijkt dit niet mogelijk (of althans niet realistisch).
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures