Springen naar inhoud

Ruimtemeetkunde


  • Log in om te kunnen reageren

#1

Bellerophr0n

    Bellerophr0n


  • >25 berichten
  • 88 berichten
  • Ervaren gebruiker

Geplaatst op 13 januari 2010 - 20:13

Vier punten a,b,c,d ∈ S0(S-nul), niet alle op één rechte, vormen een parallellogram abcd enkel en alleen indien a-b+c-d = o. Bewijs.Oefening 5
Hoe zou ik dat kunnen bewijzen? Kan iemand mij een duwtje in de juiste richting geven?
LaTeX ??

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Safe

    Safe


  • >5k berichten
  • 9901 berichten
  • Pluimdrager

Geplaatst op 13 januari 2010 - 20:37

Vier punten a,b,c,d ∈ S0(S-nul), niet alle op één rechte, vormen een parallellogram abcd enkel en alleen indien a-b+c-d = o. Bewijs.Oefening 5
Hoe zou ik dat kunnen bewijzen? Kan iemand mij een duwtje in de juiste richting geven?
LaTeX

??

Laat ik beginnen je met je inspanning betreffende vectoren met LaTeX te complimenteren.
Helaas is de volgende notatie niet correct.
LaTeX
Beter is, zie m'n vorige aanbevelingen:
LaTeX

Wanneer heb je te maken met een parallellogram?
Neem aan dat de punten zijn aangegeven met A, B, C, en D, met de bijbehorende plaatsvectoren (pv).

Veranderd door Safe, 13 januari 2010 - 20:39


#3

Bellerophr0n

    Bellerophr0n


  • >25 berichten
  • 88 berichten
  • Ervaren gebruiker

Geplaatst op 13 januari 2010 - 22:58

Ik zie net dat mijn link een beetje mis was gelopen. Hier is het juiste. Oefening 5
Wanneer heb je te maken met een parallellogram? 2 keer evenwijdige zijden? anders dan dat geen idee...
Neem aan dat de punten zijn aangegeven met A, B, C, en D, met de bijbehorende plaatsvectoren (pv).
Deze zin begrijp ik niet. :eusa_whistle:

#4

Safe

    Safe


  • >5k berichten
  • 9901 berichten
  • Pluimdrager

Geplaatst op 14 januari 2010 - 09:58

St: Een parallellogram is bepaald door overstaande lijnstukken zijn gelijk en evenwijdig.
Dit is (natuurlijk) niet het enige kenmerk. Jouw st. is ook juist. De bovenstaande st kan je hier goed gebruiken.

Je werkt met vectoren.
Hoe ben je gewend deze te noteren?
Ken je de begrippen: plaatsvector (pv), steunvector (stv) en vrije vector?

Wanneer zijn twee vectoren gelijk?

#5

Bellerophr0n

    Bellerophr0n


  • >25 berichten
  • 88 berichten
  • Ervaren gebruiker

Geplaatst op 14 januari 2010 - 19:02

Hoe ben je gewend deze te noteren?
LaTeX Zo schrijf ik ze, als dat is wat je bedoelt.
Ken je de begrippen: plaatsvector (pv), steunvector (stv) en vrije vector?
Ik gebruik het boek "Studiepakket Ruimtemeetkunde", daarin vond ik geen van deze begrippen.
Wanneer zijn twee vectoren gelijk?
Als ze dezelfde grootte en richting hebben.

#6

Safe

    Safe


  • >5k berichten
  • 9901 berichten
  • Pluimdrager

Geplaatst op 14 januari 2010 - 19:24

En hoe noteer je punten?

In je opgave zie ik staan dat je notatie daar is: a-b+c-d=0. Dus geen hoofdletters.

#7

Prot

    Prot


  • >250 berichten
  • 478 berichten
  • Ervaren gebruiker

Geplaatst op 14 januari 2010 - 19:55

En hoe noteer je punten?

In je opgave zie ik staan dat je notatie daar is: a-b+c-d=0. Dus geen hoofdletters.


Dat komt omdat het boek nog de oude schrijfwijze voor vectoren gebruikt. De reeks 'studiepakket' is niet bepaald nieuw.

#8

Safe

    Safe


  • >5k berichten
  • 9901 berichten
  • Pluimdrager

Geplaatst op 14 januari 2010 - 19:58

Ik wil graag tot een unieke afspraak voor de notatie van vectoren en punten komen.

#9

Prot

    Prot


  • >250 berichten
  • 478 berichten
  • Ervaren gebruiker

Geplaatst op 14 januari 2010 - 20:19

Ik wil graag tot een unieke afspraak voor de notatie van vectoren en punten komen.


Op school heeft onze leraar gezegd dat vectoren geschreven worden als een hoofdletter, dus kunnen de punten geschreven worden als kleine letters.

#10

Bellerophr0n

    Bellerophr0n


  • >25 berichten
  • 88 berichten
  • Ervaren gebruiker

Geplaatst op 14 januari 2010 - 20:20

Excuses voor in de opgave foute notatie te gebruiken. Ik heb een link dat verwijst naar het boek. Daarin staat het in deze vorm. (vectoren) Oefening 5
LaTeX

Kan ik mijn eerste post misschien wijzigen? Want ik vind nergens een knop om het te wijzigen.

Ik zou zeggen voor:
- Vectoren: LaTeX
- Punten: a

Indien jij een ander voorstel hebt, zou ik het graag weten.

#11

Prot

    Prot


  • >250 berichten
  • 478 berichten
  • Ervaren gebruiker

Geplaatst op 14 januari 2010 - 20:42

Excuses voor in de opgave foute notatie te gebruiken. Ik heb een link dat verwijst naar het boek. Daarin staat het in deze vorm. (vectoren) Oefening 5
LaTeX



Kan ik mijn eerste post misschien wijzigen? Want ik vind nergens een knop om het te wijzigen.

Ik zou zeggen voor:
- Vectoren: LaTeX
- Punten: a

Indien jij een ander voorstel hebt, zou ik het graag weten.


Als je het construeert zie je de oplossing. De vectoren A-B+C-D komt uiteindelijk uit in de nulvector. Als je het construeert begin je met een parallellogram te tekenen, duid daar de punten A B C D op aan. Als nu (A-B+C-D) goed construeert zul je tot de uiteindelijke vergelijking komen. Alleen weet ik niet hoe je het moet bewijzen zonder tekening.

#12

Safe

    Safe


  • >5k berichten
  • 9901 berichten
  • Pluimdrager

Geplaatst op 14 januari 2010 - 20:50

Excuses voor in de opgave foute notatie te gebruiken. Ik heb een link dat verwijst naar het boek. Daarin staat het in deze vorm. (vectoren) Oefening 5
LaTeX



Kan ik mijn eerste post misschien wijzigen? Want ik vind nergens een knop om het te wijzigen.

Ik zou zeggen voor:
- Vectoren: LaTeX
- Punten: a

Indien jij een ander voorstel hebt, zou ik het graag weten.

Accoord.

Kijk nu naar de overstaande zijden van het par abcd met pv ABCD.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures