Springen naar inhoud

Lineaire tijdsinvariante continue systemen


  • Log in om te kunnen reageren

#1

jopske

    jopske


  • >25 berichten
  • 90 berichten
  • Ervaren gebruiker

Geplaatst op 30 mei 2010 - 15:43

hallo,

ik heb een vraag over het opstellen van de differentiaalvergelijking van een systeem met roterende schijf.

bij een massa-veer systeem met als excitatie een bewegende wand:

m.y'' = -k.( y - x ) - c.( y' - x' )

waarbij:
m = massa
y = verplaatsing massa
x = verplaatsing bewegende wand
k = veerconstante
c = demperconstante

Dit snap ik.

maar bij een schijf zou dit de differentiaal moeten zijn:
(excitatie is bewegende wand,
bewegende wand is verbonden met veer en demper, daarna is er de massa, die is verbonden met een schijf die kan draaien. is dit duidelijk? :-/ )

J.LaTeX '' = -R.k.( R.LaTeX - x ) - R.c.( R.LaTeX ' -x' )



waarbij:
J = inertiemoment is van schijf
LaTeX = hoek van draaiing van de schijf (in radialen)
R = straal schijf


nu is mijn vraag:
Waarom vermenigvuldigen ze die veerconstante en demperconstante ook nog met R ?

ik snap wel waarom ze LaTeX vermenigvuldigen met R (omdat R.LaTeX = afstand ?)

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Jan van de Velde

    Jan van de Velde


  • >5k berichten
  • 45186 berichten
  • Moderator

Geplaatst op 01 juni 2010 - 21:26

Iemand die hier een handje kan toesteken?
ALS WIJ JE GEHOLPEN HEBBEN....
help ons dan eiwitten vouwen, en help mee ziekten als kanker en zo te bestrijden in de vrije tijd van je chip...
http://www.wetenscha...showtopic=59270

#3

dirkwb

    dirkwb


  • >1k berichten
  • 4177 berichten
  • Moderator

Geplaatst op 01 juni 2010 - 22:00

//is dit duidelijk? :-/ )

Nee, totaal niet.
Quitters never win and winners never quit.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures