Springen naar inhoud

Transformatiematrix


  • Log in om te kunnen reageren

#1

Tudum

    Tudum


  • >250 berichten
  • 412 berichten
  • Ervaren gebruiker

Geplaatst op 13 juni 2010 - 09:01

Hallo!

Ik zit vast met een oefening...

wiskmeth.jpg

Ik dacht dat als je een transformatiematrix vermenigvuldigde met een vector in het ene stelsel (in de basisvectoren behorend bij dat stelsel), je de componenten van de vector kreeg die met de basisvectoren van het nieuwe stelsel, de positie van de vector in het nieuwe stelsel gaven. In de oefening is dit niet zo. Je krijgt de basisvectoren, maar moet dan nog gaan zien hoe veel keer X en Y erin passen...

Kan iemand me dit uitleggen? Ik kan wel aannemen van "hmm, blijkbaar moet je het toch zo doen en niet zoals ik dacht", maar mijn gevoel protesteert...
Vroeger Laura.

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2


  • Gast

Geplaatst op 13 juni 2010 - 09:08

Nou, hoeveel keer x en y niet, volgens mij hebben ze iets anders gedaan. Kijk even naar het verschil tussen de laatste twee kolomvectoren in het plaatje (de accenten)...

Veranderd door bessie, 13 juni 2010 - 09:11


#3

Tudum

    Tudum


  • >250 berichten
  • 412 berichten
  • Ervaren gebruiker

Geplaatst op 13 juni 2010 - 09:13

Nou, hoeveel keer x en y niet, volgens mij hebben ze iets anders gedaan. Kijk even naar het verschil tussen de laatste twee kolomvectoren in het plaatje (de accenten)...


Je hebt daar als T_1 2X'Y', terwijl Y = X'Y' => 2Y? Iets anders kan ik er niet van maken...
Vroeger Laura.

#4

Xenion

    Xenion


  • >1k berichten
  • 2609 berichten
  • Moderator

Geplaatst op 13 juni 2010 - 09:17

Ze passen gewoon de coördinaten transformatie toe, die gegeven staat in het begin.

Je weet dat X'Y' = Y, dus je vult dat in in de eerste component.

Voor de 2de weet je dat (Y')² = X, dus je vult dat in en dan kijk je ook naar de 2de component van de transformatie en je rekent verder: (X')² = (Y/Y')² =Y²/(Y')² = Y/X²

#5

Tudum

    Tudum


  • >250 berichten
  • 412 berichten
  • Ervaren gebruiker

Geplaatst op 13 juni 2010 - 09:23

Ze passen gewoon de coördinaten transformatie toe, die gegeven staat in het begin.

Je weet dat X'Y' = Y, dus je vult dat in in de eerste component.

Voor de 2de weet je dat (Y')² = X, dus je vult dat in en dan kijk je ook naar de 2de component van de transformatie en je rekent verder: (X')² = (Y/Y')² =Y²/(Y')² = Y/X²


Maar... wat is dan het nut van die transformatiematrix? Waarom vermenigvuldig je daarmee?

Je hebt één vector, die blijft op dezelfde plaats staan, je bekijkt die gewoon in een ander coördinatenstelsel. Stel dat ik een orthonormaal assenstelsel heb waarin een punt staat (x = 1, y = 1), en ik bekijk die in een orthogonaal assenstelsel waarvan de schaalverdeling de helft kleiner is, dus waar in het ene een 1 staat, staat in het andere 2.

1/2 x = x'
1/2 y = y'

Dan kijk ik naar mijn vector, x = 1 en y =1, beetje eenvoudig rekenwerk geeft dan dat x' = 2 en y' = 2. Geen transformatiematrix nodig gehad. Waarom hebben ze die dan wel nodig in de oefening die ik kopieerde?

Sorry als dit enigszins onduidelijk geformuleerd is, maar 'k krijg het niet duidelijker... Waarschijnlijk omdat ik het niet snap ;)
Vroeger Laura.

#6

Xenion

    Xenion


  • >1k berichten
  • 2609 berichten
  • Moderator

Geplaatst op 13 juni 2010 - 10:02

Je kan inderdaad vaak gewoon de transformaties gewoon invullen. Maar soms is het gewoon handiger om een operator te hebben waarmee je in 1 stap een transformatie kan uitvoeren. Kijk bijvoorbeeld naar de rotatie als transformatie.

#7

Tudum

    Tudum


  • >250 berichten
  • 412 berichten
  • Ervaren gebruiker

Geplaatst op 13 juni 2010 - 10:13

Je kan inderdaad vaak gewoon de transformaties gewoon invullen. Maar soms is het gewoon handiger om een operator te hebben waarmee je in 1 stap een transformatie kan uitvoeren. Kijk bijvoorbeeld naar de rotatie als transformatie.


Maar ik snap niet wat je doet met die transformatiematrix. Je haalt je vector erdoor, er komt een nieuwe uit, maar die is nog steeds uitgedrukt in de oude basisvectoren. Lijkt mij dat je dan een andere vector hebt?
Vroeger Laura.

#8

Xenion

    Xenion


  • >1k berichten
  • 2609 berichten
  • Moderator

Geplaatst op 13 juni 2010 - 11:18

Je kan het makkelijker inzien als je basisvectoren transformeert en kijkt wat dat geeft. Je kan het vrij makkelijk bij de rotatie zien.

#9

Tudum

    Tudum


  • >250 berichten
  • 412 berichten
  • Ervaren gebruiker

Geplaatst op 28 augustus 2010 - 13:52

Je kan het makkelijker inzien als je basisvectoren transformeert en kijkt wat dat geeft. Je kan het vrij makkelijk bij de rotatie zien.


Ten eerste: sorry dat ik nu pas reageer, dit bericht is van de dag voor mijn examen, en er was wat stress bij toen ;).

Ten tweede: ik snap dat nog altijd niet. Als je een vector vermenigvuldigt met een transformatiematrix verwacht je toch dat je meteen de vector in een ander coördinatenstelsel krijgt? Waarom moet je eerst de basisvectoren daar nog uit gaan halen?
Vroeger Laura.

#10

Xenion

    Xenion


  • >1k berichten
  • 2609 berichten
  • Moderator

Geplaatst op 28 augustus 2010 - 16:00

Beschouw een rotatie over 30° in een xy-assenstelsel.

De originele eenheidsvectoren zijn LaTeX en LaTeX .

De matrix die die transformatie beschrijft is de volgende:
LaTeX

Als je die transformatie bijvoorbeeld toepast op de 1e basisvector dan krijg je:

LaTeX

Dat zijn de coördinaten van de getransformeerde basisvector in het originele assenstelsel. Uiteraard zijn die coördinaten in het getransformeerde assenstelsel ook gewoon LaTeX en om dat te krijgen moet je de inverse transformatie toepassen. Je hebt dus eigenlijk binnen het originele assenstelsel gewoon een vector 30° in tegenwijzerszin verdraaid met deze transformatie.

Als je nu de coördinaten van de originele basisvector wil kennen in het nieuwe assenstelsel, dan moet je op LaTeX de inverse transformatie toepassen:

LaTeX

De originele basisvector is tegen opzichte van de nieuwe dus eigenlijk 30° in wijzerszin verdraaid. Ik hoop dat dit voorbeeld de zaken een beetje kan verduidelijken?

#11

Tudum

    Tudum


  • >250 berichten
  • 412 berichten
  • Ervaren gebruiker

Geplaatst op 29 augustus 2010 - 08:47

Het is al een beetje duidelijker, bedankt!

Ik dacht dat je met een transformatiematrix gewoon de vector op zijn oorspronkelijke plaats liet staan, en dan berekende wat de coördinaten van die vector zijn in het nieuwe assenstelsel? Maar dat is dus niet zo? Je doet daar gewoon mee wat je met het nieuwe assenstelsel t.o.v. het oude gedaan hebt, zodat die vector op dezelfde positie t.o.v. het nieuwe stelsel staat als hij vroeger t.o.v. het oude stelsel stond?
Vroeger Laura.

#12

Xenion

    Xenion


  • >1k berichten
  • 2609 berichten
  • Moderator

Geplaatst op 29 augustus 2010 - 09:33

zodat die vector op dezelfde positie t.o.v. het nieuwe stelsel staat als hij vroeger t.o.v. het oude stelsel stond?


Ja inderdaad, maar nu moet je wel opletten want blijkbaar doet de matrix in jouw opgave net het omgekeerde.
Maar je zou moeten begrijpen wat er gebeurt als je die laatste regel stap voor stap volgt.

Het hangt er allemaal van af hoe de transformatiematrix gedefinieerd werd. Het opstellen ervan zou je een paar paragrafen terug ergens moeten staan hebben.

Veranderd door Xenion, 29 augustus 2010 - 09:35


#13

Tudum

    Tudum


  • >250 berichten
  • 412 berichten
  • Ervaren gebruiker

Geplaatst op 29 augustus 2010 - 11:24

Ja inderdaad, maar nu moet je wel opletten want blijkbaar doet de matrix in jouw opgave net het omgekeerde.
Maar je zou moeten begrijpen wat er gebeurt als je die laatste regel stap voor stap volgt.

Het hangt er allemaal van af hoe de transformatiematrix gedefinieerd werd. Het opstellen ervan zou je een paar paragrafen terug ergens moeten staan hebben.


Maar als dat dan klopt... Dan kan je een transformatiematrix toch niet gebruiken om bijvoorbeeld waarnemingen van planetenbewegingen op de ene plaats op aarde te kunnen gebruiken op een andere plaats? Want wat je doet is "die planetenbewegingen verplaatsen" dan?
Vroeger Laura.

#14

Xenion

    Xenion


  • >1k berichten
  • 2609 berichten
  • Moderator

Geplaatst op 29 augustus 2010 - 11:40

Als je die basisvectoren verdraaid hebt, vormen de getransformeerde vectoren weer een basis. Als je nu een willekeurige vector gaat schrijven als een lineaire combinatie van de getransformeerde vectoren, dan bekom je dus eigenlijk de coördinaten in het getransformeerde assenstelsel.

Mits juist toepassen van de transformatie en de inverse transformatie kan je dus steeds wisselen tussen de 2 assenstelsels.

#15

Tudum

    Tudum


  • >250 berichten
  • 412 berichten
  • Ervaren gebruiker

Geplaatst op 01 september 2010 - 09:10

Als je die basisvectoren verdraaid hebt, vormen de getransformeerde vectoren weer een basis. Als je nu een willekeurige vector gaat schrijven als een lineaire combinatie van de getransformeerde vectoren, dan bekom je dus eigenlijk de coördinaten in het getransformeerde assenstelsel.

Mits juist toepassen van de transformatie en de inverse transformatie kan je dus steeds wisselen tussen de 2 assenstelsels.


Dus je transformatiematrix heeft enkel invloed op de basisvectoren of zo?

(Sorry, ik weet dat ik er wel héél lang over doe om het te snappen, maar ik "zie" het niet)
Vroeger Laura.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Vacatures