Springen naar inhoud

Bolco÷rdinaten


  • Log in om te kunnen reageren

#1

Wokke

    Wokke


  • >25 berichten
  • 37 berichten
  • Gebruiker

Geplaatst op 16 juni 2010 - 22:46

Volgende tekening is gegeven.

Geplaatste afbeelding

De uitleg begint als volgt: (vectoren worden aangeduid door vet lettertype)
---
De plaatsvector in bolco÷rdinaten is:
OP = r = x1e1 + x2e2 + x3e3

Het vlak (e3P) snijdt e1e2 in OP' d.w.z. e' is eenheidsvector langs de snijlijn.
We oriŰnteren het vlak (e3P) zodat:

e = e3 cos(th) + e' sin(th) (th = theta)

met:

sin(th) > 0
0 < th < pi

zodat:

r = r cos(th) e3 + r sin(th) e'
r > 0

---

Hierna wordt de oriŰntatie van het vlak e1e2 vastgelegd op een gelijkaardige manier, maar aangezien ik al vastzit bij e = e3 cos(th) + e' sin(th) zal ik hier maar mee beginnen.

Kan iemand uitleggen waar die gelijkheid vandaan komt?
Probeer niet betere antwoorden te geven dan wel betere vragen te stellen.

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

thermo1945

    thermo1945


  • >1k berichten
  • 3112 berichten
  • Verbannen

Geplaatst op 16 juni 2010 - 23:32

Wellicht helpt het, als een eerst een rechthoekig blok tekent met links achteraan op de grond het punt O.
Teken ook het verticale diagonaalvlak door O.

#3

Wokke

    Wokke


  • >25 berichten
  • 37 berichten
  • Gebruiker

Geplaatst op 17 juni 2010 - 10:27

Wellicht helpt het, als een eerst een rechthoekig blok tekent met links achteraan op de grond het punt O.
Teken ook het verticale diagonaalvlak door O.


Ik denk dat ik weet wat je bedoelt, maar het punt P ligt niet ter hoogte van het eindpunt van e3. (de projectie van OP volgens e3 is dus maw niet per se gelijk aan e3 maar wel aan z.e3 als z de lengte is van die projectie op e3) Op de tekening niet en het wordt ook niet gesteld. Of doel je ergens anders op? (of heb ik het fout?)

Veranderd door Wokke, 17 juni 2010 - 10:27

Probeer niet betere antwoorden te geven dan wel betere vragen te stellen.

#4

TerrorTale

    TerrorTale


  • >100 berichten
  • 146 berichten
  • Ervaren gebruiker

Geplaatst op 18 juni 2010 - 08:51

ik snap je probleem niet echt denk ik..

maar als je het nou gewoon zo ziet:

e3 is de projectie van e op de z-as.


e' is de loodrechte projectie van e op het xy-vlak


e1 is de projectie van e' op de x-as en e2 is de projectie van e' op de y-as.



nu zit er tussen de richtingsvectoren e3 en e een hoek theta, dus om de projectie van e op e3 te bekomen moet je de richtingsvector e vermenigvuldigen met cos(theta) (cos=aanliggend/schuin)



of je nu de hoek phi tussen e of e' neemt maakt eigenlijk niet uit, want e' is de loodrechte projectie op het xy-vlak van e (het enige verschil tussen de twee zit hem tussen het feit dat e3 0 zal zijn als je in het xy-vlak werkt.


nu herhaal je gewoon wat je deed bij de z-as en e, maar nu dan voor de x-as en e'.

#5

Wokke

    Wokke


  • >25 berichten
  • 37 berichten
  • Gebruiker

Geplaatst op 18 juni 2010 - 18:07

ik snap je probleem niet echt denk ik..

maar als je het nou gewoon zo ziet:

e3 is de projectie van e op de z-as.


e' is de loodrechte projectie van e op het xy-vlak


e1 is de projectie van e' op de x-as en e2 is de projectie van e' op de y-as.



nu zit er tussen de richtingsvectoren e3 en e een hoek theta, dus om de projectie van e op e3 te bekomen moet je de richtingsvector e vermenigvuldigen met cos(theta) (cos=aanliggend/schuin)



of je nu de hoek phi tussen e of e' neemt maakt eigenlijk niet uit, want e' is de loodrechte projectie op het xy-vlak van e (het enige verschil tussen de twee zit hem tussen het feit dat e3 0 zal zijn als je in het xy-vlak werkt.


nu herhaal je gewoon wat je deed bij de z-as en e, maar nu dan voor de x-as en e'.


Nee dat is het nu net, e3 is NIET de projectie van e op de z-as. (niet volgens de tekening en niet volgens de tekst die erbij wordt gegeven)
Ik zoek hier niet de afleiding van de transformatieformules van carthesische naar bolco÷rdinaten. Ik zoek een verklaring voor deze 'preamble', voorwaarden. De transformatieformules afleiden kan ik, daar is niks moeilijks aan. Maar dat is niet wat hier gedaan wordt.
Hier wordt de oriŰntatie van het (e3 P)-vlak vastgelegd. Ik vraag me af waarom.

Veranderd door Wokke, 18 juni 2010 - 18:08

Probeer niet betere antwoorden te geven dan wel betere vragen te stellen.

#6


  • Gast

Geplaatst op 18 juni 2010 - 19:10

We hebben het hier over eenheidsvectoren in een gewone 3-d ruimte. Dat betekent dat alle eenheidsvectoren een lengte van 1 hebben en dus nooit een projectie kunnen zijn van een andere eenheidsvector.
naamloos.GIF
Beschouw het vlak van E3, E' en E. De ehv langs de schuine lijn (E) heeft componenten LaTeX en LaTeX . Omdat cos(pi/2-x)=sin(x) krijg je de formule die jij ook opgekregen hebt. Toch?

#7

Wokke

    Wokke


  • >25 berichten
  • 37 berichten
  • Gebruiker

Geplaatst op 19 juni 2010 - 11:37

We hebben het hier over eenheidsvectoren in een gewone 3-d ruimte. Dat betekent dat alle eenheidsvectoren een lengte van 1 hebben en dus nooit een projectie kunnen zijn van een andere eenheidsvector.
naamloos.GIF
Beschouw het vlak van E3, E' en E. De ehv langs de schuine lijn (E) heeft componenten LaTeX

en LaTeX . Omdat cos(pi/2-x)=sin(x) krijg je de formule die jij ook opgekregen hebt. Toch?


Bedankt voor je reactie. Waarom heeft die componenten LaTeX en LaTeX volgens jou?

De cosinus is de verhouding van de aanliggende zijde op de schuine zijde, dus is LaTeX met x3 de component van E volgens E3 en die component is dus niet gelijk aan LaTeX maar wel gelijk aan LaTeX . En de component van E volgens E' is op analoge manier gelijk aan LaTeX . Daarom vind ik de formule die er staat zo vreemd. Als E nu geen eenheidsvector zou zijn, akkoord. Maar je noemt een vector toch niet E als het geen eenheidsvector is... Ik begin er nochtans wel aan te twijfelen. Misschien wordt hij E genoemd OMDAT hij de projectie van E3 en E' op de schuine (OP) is... Staat echter nergens in de tekst. En dat is toch iets waar je de aandacht op wilt vestigen als het zo is, me dunkt.
Probeer niet betere antwoorden te geven dan wel betere vragen te stellen.

#8


  • Gast

Geplaatst op 19 juni 2010 - 13:26

naamloos.GIF
Je hebt helemaal gelijk. Mijn plaatje was fout. Volgens mij is deze goed. Nu weet ik in elk geval dat je snapt waar je mee bezig bent! ](*,)

#9

Wokke

    Wokke


  • >25 berichten
  • 37 berichten
  • Gebruiker

Geplaatst op 19 juni 2010 - 16:57

naamloos.GIF
Je hebt helemaal gelijk. Mijn plaatje was fout. Volgens mij is deze goed. Nu weet ik in elk geval dat je snapt waar je mee bezig bent! ](*,)


Hm, da's eens op een manier bekeken die ik nog niet gedaan had. Interessant. Ik vrees echter wel dat de gegeven gelijkheid hier ook niet uit volgt... (of toch niet zover ik het zie) Op jouw nieuwe tekening zou LaTeX groter zijn dan E, toch?
Probeer niet betere antwoorden te geven dan wel betere vragen te stellen.

#10

kotje

    kotje


  • >1k berichten
  • 3330 berichten
  • Verbannen

Geplaatst op 19 juni 2010 - 18:51

Volgende tekening is gegeven.

Geplaatste afbeelding

De uitleg begint als volgt: (vectoren worden aangeduid door vet lettertype)
---
De plaatsvector in bolco÷rdinaten is:
OP = r = x1e1 + x2e2 + x3e3

Het vlak (e3P) snijdt e1e2 in OP' d.w.z. e' is eenheidsvector langs de snijlijn.
We oriŰnteren het vlak (e3P) zodat:

e = e3 cos(th) + e' sin(th) (th = theta)

met:

sin(th) > 0
0 < th < pi

zodat:

r = r cos(th) e3 + r sin(th) e'
r > 0

---

Hierna wordt de oriŰntatie van het vlak e1e2 vastgelegd op een gelijkaardige manier, maar aangezien ik al vastzit bij e = e3 cos(th) + e' sin(th) zal ik hier maar mee beginnen.

Kan iemand uitleggen waar die gelijkheid vandaan komt?


De plaatsvector OP in bolco÷rdinaten wordt toch anders geschreven?

Als e3,e en e' eenheidsvectoren zijn dan liggen de eindpunten op een cirkel met straal 1 en kan men nooit de gevraagde
betrekking bewijzen?
Volgens mijn verstand kan er niets bestaan en toch bestaat dit alles?

#11

Wokke

    Wokke


  • >25 berichten
  • 37 berichten
  • Gebruiker

Geplaatst op 19 juni 2010 - 20:37

De plaatsvector OP in bolco÷rdinaten wordt toch anders geschreven?

Als e3,e en e' eenheidsvectoren zijn dan liggen de eindpunten op een cirkel met straal 1 en kan men nooit de gevraagde
betrekking bewijzen?


Ook mijn gedachtengang. Ik vind het een hÚÚl vreemde gelijkheid... Maar omdat die helemaal wordt doorgetrokken vond/vind ik het wel erg onwaarschijnlijk dat dit nog niet opgevallen zou zijn. Het staat in m'n cursus Wiskundige Methoden id Fysica II en hoewel vele afleidingen hier niet echt duidelijk in uitgelegd staan, zou het me toch verbazen moest dit volledig fout zijn. Vandaar dit topic, ik wil weten wat anderen hiervan vinden.

Edit: volgende tekening toont nog eens een 2D situatieschets waarop volgens mij duidelijk is dat ook uit de andere kijk van Bessie niet het gevraagde volgt:

Geplaatste afbeelding

Veranderd door Wokke, 19 juni 2010 - 20:47

Probeer niet betere antwoorden te geven dan wel betere vragen te stellen.

#12

kotje

    kotje


  • >1k berichten
  • 3330 berichten
  • Verbannen

Geplaatst op 20 juni 2010 - 07:11

Ook mijn gedachtengang. Ik vind het een hÚÚl vreemde gelijkheid... Maar omdat die helemaal wordt doorgetrokken vond/vind ik het wel erg onwaarschijnlijk dat dit nog niet opgevallen zou zijn. Het staat in m'n cursus Wiskundige Methoden id Fysica II en hoewel vele afleidingen hier niet echt duidelijk in uitgelegd staan, zou het me toch verbazen moest dit volledig fout zijn. Vandaar dit topic, ik wil weten wat anderen hiervan vinden.

Edit: volgende tekening toont nog eens een 2D situatieschets waarop volgens mij duidelijk is dat ook uit de andere kijk van Bessie niet het gevraagde volgt:

Geplaatste afbeelding

Correctie:
En toch klopt de betrekking: e.e=1 =cos▓ ;) +sin▓ ](*,) =1
Volgens mijn verstand kan er niets bestaan en toch bestaat dit alles?

#13

Wokke

    Wokke


  • >25 berichten
  • 37 berichten
  • Gebruiker

Geplaatst op 20 juni 2010 - 11:49

Correctie:
En toch klopt de betrekking: e.e=1 =cos▓ ;) +sin▓ ](*,) =1


Aha, bedankt! Ik denk dat volgende redenering dan correct is:

Bovendien geldt in carthesische co÷rdinaten:

LaTeX

Met LaTeX de component van e langs e3 en LaTeX de component van e langs e'.

Identificatie met jouw betrekking geeft dan
LaTeX en LaTeX .

De vector e wordt dus bepaald door de vectorsom van de componenten langs de assen:
LaTeX .

Klopt deze redenering?
Probeer niet betere antwoorden te geven dan wel betere vragen te stellen.

#14

kotje

    kotje


  • >1k berichten
  • 3330 berichten
  • Verbannen

Geplaatst op 20 juni 2010 - 16:41

Klopt
Volgens mijn verstand kan er niets bestaan en toch bestaat dit alles?

#15

Wokke

    Wokke


  • >25 berichten
  • 37 berichten
  • Gebruiker

Geplaatst op 20 juni 2010 - 21:37

Ha! ;) Heel erg bedankt kotje, ik ben blij dat ik nu toch begrijp waar die betrekking vandaan komt :-) Het was niet essentieel voor praktische toepassingen met bolco÷rdinaten, maar ik wou het desalniettemin (prachtig woord) graag weten.
Probeer niet betere antwoorden te geven dan wel betere vragen te stellen.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures