Springen naar inhoud

Matrix met een nuloplossing


  • Log in om te kunnen reageren

#1

Loeppie

    Loeppie


  • 0 - 25 berichten
  • 1 berichten
  • Gebruiker

Geplaatst op 25 juni 2010 - 18:39

All,

Ik ben even de weg kwijt.

Ik heb onderstaande matrix:

1 -4 7 -5
0 1 -4 3
2 -6 6 -4

En ik moet een vector vinden, zodanig dat vermenigvuldiging van deze vector met bovenstaande matrix uitkomt op 0.

En het mag niet een nul vector zijn.

Ik dacht ik reduceer de vector naar een vorm:

1 0 0 x 0
0 1 0 x 0
0 0 1 x 0

Maar dan blijven het natuurlijk allemaal nullen.
Ik heb de oplossing wel. Maar ik snap niet hoe ik er aan kom. Het is volgens mij niet echt een moelijke vraag, kan iemand mij helpen :-)

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

JWvdVeer

    JWvdVeer


  • >1k berichten
  • 1114 berichten
  • Ervaren gebruiker

Geplaatst op 25 juni 2010 - 20:53

Bedoel je niet gewoon per ongeluk de inverse matrix? Wikipedia?
Kan trouwens niet, je hebt geen nxn-matrix...

Als je echt nul als uitkomst wilt hebben, kan ik maar één ding verzinnen:

LaTeX

Veranderd door JWvdVeer, 25 juni 2010 - 20:59


#3

EvilBro

    EvilBro


  • >5k berichten
  • 6703 berichten
  • VIP

Geplaatst op 25 juni 2010 - 21:16

LaTeX
Je kunt nu de eerste rij twee keer van de derde rij afhalen (rechts staat toch nul, dus daar hoef je niet echt op te letten):
LaTeX
Je kunt dit truukje nogmaals toepassen (zoek zelf uit met welke rijen). Je kunt nu de verbanden leggen tussen a,b,c en d (bedenk dat er meerdere oplossingen zijn aangezien als (a,b,c,d) een oplossing is elke vermenigvuldiging met een constante ook een oplossing is).

#4

Westy

    Westy


  • >250 berichten
  • 578 berichten
  • Ervaren gebruiker

Geplaatst op 25 juni 2010 - 21:48

Anders gezegd: ik denk dat je ook gewoon de matrices -zoals Evilbro ze schreef- kan vermenigvuldigen, en het uitgeschreven resultaat dan gelijkstelt aan de 3X1 nulmatrix. Wat dan een stelsel zou moeten geven van 3 vergelijkingen met 4 onbekendes: a, b, c en d. Als je daarin dan 1 onbekende zelf kiest kan je de andere 3 uitrekenen.
Wat natuurlijk in feite hetzelfde is als wat Evilbro doet, hij/zij lost dit stelsel in feite op in matrixvorm. Als je de vergelijkingen op die wijze wat kan vereenvoudigen -zoals EvilBro doet- wordt het rekenwerk natuurlijk veel eenvoudiger.
---WAF!---

#5

dirkwb

    dirkwb


  • >1k berichten
  • 4172 berichten
  • Moderator

Geplaatst op 25 juni 2010 - 21:57

En ik moet een vector vinden, zodanig dat vermenigvuldiging van deze vector met bovenstaande matrix uitkomt op 0.

Je bedoelt natuurlijk 0.
Quitters never win and winners never quit.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures