Homomorfismen

Moderators: dirkwb, Xilvo

Reageer
Gebruikersavatar
Berichten: 12

Homomorfismen

Beste,

In mijn cursus lineaire algebra kwam ik de volgende definitie tegen met vraag:

definitie

Ik heb echt geen idee hoe ik hieraan moet beginnen. Ik denk dat ik moet nagaan dat de som en het product met een scalair ook nog tot die homomorfismen behoren. Ik weet echter niet hoe. Kan iemand mij hierbij verder helpen ?

Bedankt !

Gebruikersavatar
Berichten: 368

Re: Homomorfismen

Je moet aantonen dat Hom(V,W) een vectorruitmte is over K

In de gegeven definitie is de som van twee homomorfismen S en T gedefinieerd alsook de scalaire vermenigvuldiging.

Je moet dus stap voor stap aantonen dat de voorwaarden voor een vectorruimte vervuld zijn.

Dat betekent :

Aantonen dat er een commutatieve groep is voor de optelling van homomorfismen

en dat de 4 voorwaarden van scalaire vermenigvuldiging vervuld zijn.
Het eindig getal π verenigt het eindige met het transcendente.

De eindige cirkel bereikt het oneindige in zijn isotrope punten.

Gebruikersavatar
Berichten: 12

Re: Homomorfismen

hey,

Ik heb 'iets' hier

geprobeerd. Indien we Q en S van plaats wisselen bekomen we hetzelfde resultaat. Daarmee heb ik aangetoond dat er een commutatieve groep is voor de optelling. Wat bedoel je juist met de 4 voorwaarden van de scalaire vermenigvuldiging? Dat de scalaire vermenigvuldiging gesloten en distributief is zit denk ik al in mijn bewijs .

Ik denk dat 1 het neutraal element is , maar wat is dan de nulvector ? Hangt dit niet af van de soort lineaire afbeelding?

Bedankt :-)

Gebruikersavatar
Berichten: 368

Re: Homomorfismen

Om aan te tonen dat Hom(V,W) een vectorruitmte is over K

moet er stapsgewijze aangetoond worden dat

voor alle R, S en T elementen van Hom(V,W)

Voor de optelling van homomorfismen

1) + Inwendig en overal gedefinieerd is

2) de optelling van homomorfismen associatief is

3) nul-element N uit Hom(V,W) bestaat

4) Voor elke S uit Hom(V,W) moet er een tegengeteld element S' bestaan zodat S+S' = N

5)commutativiteit voor +

Nu de vier voorwaarden voor scalaire vermenigvuldiging.

Dit zijn eigenschappen van de vermenigvuldiging van S met een element van K

We spreken af dat we de kleine letters a en b gebruiken in plaats van lambda en mu om het typwerk

te vergemakkelijken

Voor alle S,T uit V en alle a, b uit K moet gelden

6) a(S+T)= aS + aT

7) (a+b)S = aS + bS

8) (ab)S = a(bS)

9) 1S = S

Als dat allemaal bewezen is, dan is Hom(V,W) een vectorruitmte is over K

Dus er zijn eigenlijk 9 puntjes te bewijzen.

De meeste onderdeeltjes kunnen bewezen worden in een paar lijntjes.

Ik stel voor dat je bijvoorbeeld begint met de eerste 2 puntjes te bewijzen.
Het eindig getal π verenigt het eindige met het transcendente.

De eindige cirkel bereikt het oneindige in zijn isotrope punten.

Gebruikersavatar
Berichten: 12

Re: Homomorfismen

Ok, ik begrijp het. Elke keer als je wil aantonen dat een bepaalde verzameling al dan niet een vectorruimte is moet je die 9 puntjes aantonen, of een tegenvoorbeeld zoeken.

Heel erg bedankt!

Gebruikersavatar
Berichten: 368

Re: Homomorfismen

juist.

Van zodra 1 voorwaarde niet vervuld is, is het geen vectorruimte.

Voor meer info over vectorruimten zie

http://www.ping.be/math/nl/vect.htm
Het eindig getal π verenigt het eindige met het transcendente.

De eindige cirkel bereikt het oneindige in zijn isotrope punten.

Reageer