Springen naar inhoud

Fysische slinger


  • Log in om te kunnen reageren

#1

QuarkSV

    QuarkSV


  • >250 berichten
  • 723 berichten
  • Ervaren gebruiker

Geplaatst op 10 januari 2011 - 09:38

Hallo

In onze cursus staat dat er bij een fysische slinger, dat E=U+K=cte is, waarin U de potentiŽle energie is en K de kinetische energie. Kan iemand me helpen d.m.v. bv een afleiding, om me dit aan te tonen? Ik begrijp niet hoe je dit kunt 'aantonen' en ik vind niet echt informatie hierover...

Alvast bedankt

Mvg

Help WSF eiwitten vouwen in de VRIJE TIJD van je computer...

Surf & download: folding.stanford.edu. Team nummer: 48658.


Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

QuarkSV

    QuarkSV


  • >250 berichten
  • 723 berichten
  • Ervaren gebruiker

Geplaatst op 10 januari 2011 - 10:55

Behoud van energie speelt hierin een rol, volgens mij. De potentiŽle energie is maximaal wanneer de slinger zich bovenaan bevindt (hoogste punt) en minimaal wanneer de slinger zich in x=0 bevindt (begintoestand). Wanneer hij de begintoestand passeert, is zijn snelheid maximaal en dus de kinetische energie maximaal (pot. E minimaal).

Ik zou nu nog moeten kunnen aantonen dat U+K een constante waarde oplevert/moet opleveren.

Help WSF eiwitten vouwen in de VRIJE TIJD van je computer...

Surf & download: folding.stanford.edu. Team nummer: 48658.


#3

klazon

    klazon


  • >5k berichten
  • 6610 berichten
  • Pluimdrager

Geplaatst op 10 januari 2011 - 11:53

Je geeft eigenlijk zelf het antwoord al. Behoud van energie. Dus het totaal van potentiŽle en kinetische energie is constant.

Veranderd door klazon, 10 januari 2011 - 11:54


#4

QuarkSV

    QuarkSV


  • >250 berichten
  • 723 berichten
  • Ervaren gebruiker

Geplaatst op 10 januari 2011 - 12:31

Je geeft eigenlijk zelf het antwoord al. Behoud van energie. Dus het totaal van potentiŽle en kinetische energie is constant.

Ja, inderdaad. Maar ik zou een afleiding ("bewijs") moeten kunnen geven hiervoor.

Help WSF eiwitten vouwen in de VRIJE TIJD van je computer...

Surf & download: folding.stanford.edu. Team nummer: 48658.


#5


  • Gast

Geplaatst op 10 januari 2011 - 15:04

De wet van behoud van energie afleiden is wel erg vergezocht.
Wat je wel kan doen, is van een bepaald systeem, zoals een fysische slinger, de bewegingsvergelijkingen op te stellen op grond van krachten en momenten.

Heb je die, dan kun je voor dat systeem het verloop van kinetische en potentiele energie berekenen, en daarvan aantonen dat zij samen constant zijn.

#6

QuarkSV

    QuarkSV


  • >250 berichten
  • 723 berichten
  • Ervaren gebruiker

Geplaatst op 10 januari 2011 - 16:39

De opgave is eigenlijk: "toon aan dat de energie van een fysische slinger constant is", dus je moet aantonen dat U+K gelijk is aan een constante. En ik voel wel aan dat dit zo is, maar ik weet niet hoe ik 'formeel' kan aantonen..

Help WSF eiwitten vouwen in de VRIJE TIJD van je computer...

Surf & download: folding.stanford.edu. Team nummer: 48658.


#7


  • Gast

Geplaatst op 10 januari 2011 - 16:43

Kun je de bewegingsvergelijkingen geven? Niet gebaseerd op energiebehoud natuurlijk?

#8

QuarkSV

    QuarkSV


  • >250 berichten
  • 723 berichten
  • Ervaren gebruiker

Geplaatst op 10 januari 2011 - 17:19

Kun je de bewegingsvergelijkingen geven? Niet gebaseerd op energiebehoud natuurlijk?

Ik heb s=L.θ en θ=θmax.cos(ω.t+φ)
en v=ds/dt=L.dθ/dt = -L.θmax.ω.sin(ω.t+φ) met ω=;)(g/l)

Klopt dit?

Veranderd door QuarkSV, 10 januari 2011 - 17:21

Help WSF eiwitten vouwen in de VRIJE TIJD van je computer...

Surf & download: folding.stanford.edu. Team nummer: 48658.


#9

aadkr

    aadkr


  • >5k berichten
  • 5441 berichten
  • Pluimdrager

Geplaatst op 10 januari 2011 - 21:14

LaTeX geldt voor een mathematische slinger.
Het gaat hier om een fysische slinger.

#10

aadkr

    aadkr


  • >5k berichten
  • 5441 berichten
  • Pluimdrager

Geplaatst op 10 januari 2011 - 21:45

scan.jpg

#11

QuarkSV

    QuarkSV


  • >250 berichten
  • 723 berichten
  • Ervaren gebruiker

Geplaatst op 10 januari 2011 - 21:54

Heel erg bedankt voor je reactie.

Kun je de symbolen misschien eens vertalen, want er staan er aantal in die ik nog niet heb gezien... Wat is die J bv?
Het is waarschijnlijk daarom dat ik ook niet goed zie, wat je nu precies hebt aangetoond.

Veranderd door QuarkSV, 10 januari 2011 - 21:54

Help WSF eiwitten vouwen in de VRIJE TIJD van je computer...

Surf & download: folding.stanford.edu. Team nummer: 48658.


#12

aadkr

    aadkr


  • >5k berichten
  • 5441 berichten
  • Pluimdrager

Geplaatst op 10 januari 2011 - 22:38

De differentiaalvergelijking van een harmonische trilling is van de gedaante:
LaTeX
Vervang x door LaTeX en vervang LaTeX door LaTeX en hiermee is aangetoont dat de fysische slinger een harmonische trilling gaat uitvoeren.
De J stelt voor het massatraagheidsmoment van de slinger t.o.v. een horizontale as door O.
De vergelijking LaTeX is de bewegingsvergelijking.
Het krachtmoment t.o.v. puntO is gelijk aan het massatraagheidsmoment x de hoekversnelling.

#13

QuarkSV

    QuarkSV


  • >250 berichten
  • 723 berichten
  • Ervaren gebruiker

Geplaatst op 10 januari 2011 - 23:48

Bedankt voor de toelichting ;) .

Is er ook een mogelijkheid om dit aan te tonen zonder differentiaalvergelijkingen te gebruiken? Een afleiding waar je gebruik maakt van U=mgh en K=(m.v≤)/2 ? Ik zoek dus eigenlijk echt een afleiding die steunt op behoud van E...
De hoekbenadering sinθ=θ kan daar zeker ook bij te pas komen.

Help WSF eiwitten vouwen in de VRIJE TIJD van je computer...

Surf & download: folding.stanford.edu. Team nummer: 48658.


#14


  • Gast

Geplaatst op 11 januari 2011 - 09:19

Je kan zonder I of J (het traagheidsmoment van de slinger om de ophanging) niet berekenen welke energie hij heeft.

Voor een mathematische slinger is I gelijk aan mL^2 dus krijg je
LaTeX

De potentiele energie is
LaTeX

Als je hierin theta en omega vervangt door jouw uitdrukkingen zoals je oorspronkelijk gaf hoort uit de som van Ek en Ep een constante te komen. Dan heb je voor een mathematische slinger het behoud van energie min of meer aangetoond.

Voor een fysische slinger is de potentiele energie afhankelijk van de ligging van het zwaartepunt. Je moet in Ep dan L vervangen door L' ofzo, de afstand van zwaartepunt tot het draaipunt. De nieuwe I bepaal je met de regel van Steiner (zie wikipedia). Dan zou je alles rond moeten kunnen krijgen ...

#15

QuarkSV

    QuarkSV


  • >250 berichten
  • 723 berichten
  • Ervaren gebruiker

Geplaatst op 11 januari 2011 - 09:36

Okť, ik denk dat het via die manier zal moeten want in de cursus waaruit mijn vraag komt, wordt weinig gebruik gemaakt van DVGL.

Dus ik ga ervan uit dat dit correct was/is:

"s=L.θ en θ=θmax.cos(ω.t+φ)
en v=ds/dt=L.dθ/dt = -L.θmax.ω.sin(ω.t+φ) met ω=;)(g/l)"

Ik begrijp niet volledig wat je nu precies bedoelt met: "vervang door jou uitdrukkingen"?

De werkwijze die jij volgt (bessie) vind ik ook ergens terug op een andere site, het lijkt me goeie weg.

Veranderd door QuarkSV, 11 januari 2011 - 09:47

Help WSF eiwitten vouwen in de VRIJE TIJD van je computer...

Surf & download: folding.stanford.edu. Team nummer: 48658.






0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures