Springen naar inhoud

[Wiskunde] Limieten


  • Log in om te kunnen reageren

#1

Cycloon

    Cycloon


  • >1k berichten
  • 4810 berichten
  • VIP

Geplaatst op 18 september 2005 - 15:05

Ik ben op zoek naar de oplossing van deze oefening ... Gelieve de oplossing in het wit te zetten als het kan en me te zeggen in welke richting ik moet gaan zoeken, want ik heb geen idee hoe en waar te starten ...

f(x)= (ax≥ + 3x≤ - 9x + b) / (x≤ - x - 2) heeft een eindige limiet zowel voor x --> 2 als voor x --> -1. Bepaal a en b


Dbv :shock:

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Bart

    Bart


  • >5k berichten
  • 7224 berichten
  • VIP

Geplaatst op 18 september 2005 - 15:17

Het gaat hier om verticale asymptoten. Wat weet je van de teller en de noemer op zo'n plaats:

teller moet ongelijk zijn aan nul.
If I have seen further it is by standing on the shoulders of giants.-- Isaac Newton

#3

Cycloon

    Cycloon


  • >1k berichten
  • 4810 berichten
  • VIP

Geplaatst op 18 september 2005 - 15:21

ok in die richting zat ik ook al te denken, maar dan kom ik terug vast te zitten ...

f(x) = ((x-2)*(x-1)*(...)) / ((x-2)*(x-1))

Hoe weet ik nu wat ik als derde factor moet invullen daar ? (of doe ik het niet op de juiste manier :/)

#4

Bart

    Bart


  • >5k berichten
  • 7224 berichten
  • VIP

Geplaatst op 18 september 2005 - 15:47

Je hebt in de teller h(x)= (ax≥ + 3x≤ - 9x + b) en je weet dat er op de punten x = -1 en x = 2 een verticale asymptoot is. Dat betekent dat h(-1) ongelijk aan nul is en h(2) ongelijk aan nul:

-a + b + 12 :shock: 0
8a + b - 6 ;) 0

Vanuit dit punt is het handiger om te kijken wanneer deze wel nul zijn (de oplossingen die je vindt zijn dan de waarden voor a en b die NIET mogen)
If I have seen further it is by standing on the shoulders of giants.-- Isaac Newton

#5

Cycloon

    Cycloon


  • >1k berichten
  • 4810 berichten
  • VIP

Geplaatst op 18 september 2005 - 17:40

Dus eigenlijk is er niet 1 specifiek antwoord maar eerder een groep mogelijke antwoorden, of zie ik het nu weer verkeerd :shock:

#6

Bart

    Bart


  • >5k berichten
  • 7224 berichten
  • VIP

Geplaatst op 18 september 2005 - 17:52

Ehm, ik moet beter lezen. Er wordt gevraagd naar een EINDIGE limiet, dus geen asymptoot (want die is oneindig). Als je in de limiet deelt door nul dan kun je alleen een eindig getal krijgen als ook de teller nul is (te controleren met de regel van l'Hopital).

Dus de bovenstaande vergelijkingen gelijk aan nul geven de gevraagde waarden.
If I have seen further it is by standing on the shoulders of giants.-- Isaac Newton





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures