Springen naar inhoud

Absolute minima en maxima van een vlak


  • Log in om te kunnen reageren

#1

QED

    QED


  • >25 berichten
  • 43 berichten
  • Gebruiker

Geplaatst op 21 januari 2011 - 15:57

Op het moment ben ik bezig met het doornemen van calculus, maar loop tegen een vraag op bij het onderdeel over absolute maxima en minima van een vlak in een 3D-assenstelsel. Ik weet dat voor een gegeven gesloten set punten in LaTeX gekeken moet worden naar de kritieke punten en naar de rand van de set punten en voor een rechthoek of driehoek is dit ook helemaal duidelijk, maar toen kwam deze opgave:

LaTeX


Nu vraag ik niet naar een antwoord op de opgave, maar ik zou graag willen weten wat de methode is voor het oplossen van een opgave als deze waarbij het gebied waarover gekeken wordt een cirkel is.
"Ha ha ha... hun zijn wel dom :)"
"Wiskunde is leuker als je denkt"

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Safe

    Safe


  • >5k berichten
  • 9907 berichten
  • Pluimdrager

Geplaatst op 21 januari 2011 - 17:02

Op het moment ben ik bezig met het doornemen van calculus, maar loop tegen een vraag op bij het onderdeel over absolute maxima en minima van een vlak in een 3D-assenstelsel. Ik weet dat voor een gegeven gesloten set punten in LaTeX

gekeken moet worden naar de kritieke punten en naar de rand van de set punten en voor een rechthoek of driehoek is dit ook helemaal duidelijk, maar toen kwam deze opgave:

LaTeX


Nu vraag ik niet naar een antwoord op de opgave, maar ik zou graag willen weten wat de methode is voor het oplossen van een opgave als deze waarbij het gebied waarover gekeken wordt een cirkel is.

Heb je geleerd hoe je de kritieke ptn vindt?

#3

QED

    QED


  • >25 berichten
  • 43 berichten
  • Gebruiker

Geplaatst op 21 januari 2011 - 17:20

Mjep. Mijn boek noemt het de tweede afgeleide test, maar dat is niet waar mijn vraag over gaat. Mijn vraag gaat erover hoe je het maximum of minimum op de rand van een cirkel vindt...
"Ha ha ha... hun zijn wel dom :)"
"Wiskunde is leuker als je denkt"

#4

Safe

    Safe


  • >5k berichten
  • 9907 berichten
  • Pluimdrager

Geplaatst op 21 januari 2011 - 17:56

Dat is met deze f eenvoudig. Ga na hoe de functie er uit ziet in het xz-vlak en yz-vlak.

#5

QED

    QED


  • >25 berichten
  • 43 berichten
  • Gebruiker

Geplaatst op 22 januari 2011 - 16:18

Hmm... snap het nog niet helemaal, maar dat was mijn vraag ook niet. Mijn vraag was voor een algemene methode voor het berekenen van de integraal over de rand van een cirkel, niet voor dit specifieke geval.
"Ha ha ha... hun zijn wel dom :)"
"Wiskunde is leuker als je denkt"

#6

Safe

    Safe


  • >5k berichten
  • 9907 berichten
  • Pluimdrager

Geplaatst op 22 januari 2011 - 16:42

Ja, maar wat heb je daarover al gezien?
Algemeen maak je een tekenschema in (bv het vlak van de cirkel) van de functie.
En je bepaald de kritieke (stationaire) ptn.
Gehoord van de determinant van Hesse?

#7

Bots

    Bots


  • >25 berichten
  • 55 berichten
  • Ervaren gebruiker

Geplaatst op 22 januari 2011 - 23:23

Mijn vraag gaat erover hoe je het maximum of minimum op de rand van een cirkel vindt...



Met behulp van de volgende hulpfunctie (lagrange multiplicatoren):

1) L(x,y,λ) = f(x,y) + λ(g(x,y) − c) met g je beperkende functie ( c = 1)

2) 3 x afleiden naar 0 voor elke variabele

3) Hieruit kan je dan je stationaire punten bepalen.

4) Stationaire punten invullen in f

Veranderd door Bots, 22 januari 2011 - 23:35


#8


  • Gast

Geplaatst op 23 januari 2011 - 10:18

Lagrange is misschien wel een beetje teveel in dit geval hoor.
Met
LaTeX
LaTeX
(nb: de vlakvergelijking vervangen door de randvergelijking)
kun je f uitdrukken in x en met de afgeleide de extremen vinden, of niet?

Algemeen geval van een 2d functie is, dat het gebied is weergegeven met een functie f(x)->x. Hieruit kun je normaal gesproken y of x elimineren als boven, en de functie op die rand uitdrukken in ťťn variabele.

#9

Bots

    Bots


  • >25 berichten
  • 55 berichten
  • Ervaren gebruiker

Geplaatst op 23 januari 2011 - 12:03

Ben ik met je eens Bessie, je kan y expliciet schrijven in functie van x.

Hier hoef je lagrange niet te gebruiken. Ik bedoelde algemeen.

#10

Safe

    Safe


  • >5k berichten
  • 9907 berichten
  • Pluimdrager

Geplaatst op 23 januari 2011 - 14:45

Ben ik met je eens Bessie, je kan y expliciet schrijven in functie van x.

Hier hoef je lagrange niet te gebruiken. Ik bedoelde algemeen.

Zelfs dit hoeft niet, de extremen vind je in het xz-vlak, waarom?
Maar dat wilde de TS niet weten, maar wat hij wel al gezien heeft weten wij weer niet.

#11


  • Gast

Geplaatst op 23 januari 2011 - 15:03

Wat is jouw methode en welk antwoord krijg jij, Safe? Volgens mij mag je het gewoon zeggen zolang dit topic niet in huiswerk staat.

Ik heb in excel een plaatje gemaakt van het vraagstuk, mooi he? Alleen kloppen volgens mij de oplossingen van mijn substitutie-methode niet. Kom hier op terug.
wet.GIF

Veranderd door bessie, 23 januari 2011 - 15:06


#12


  • Gast

Geplaatst op 23 januari 2011 - 15:20

LaTeX
geeft
LaTeX
en dus
LaTeX
LaTeX
LaTeX
LaTeX
f'(x)=0 geeft dan
x=0 of
LaTeX
met oplossing x=1/2, en dat lijkt niet overeen te komen met de figuur ;)

#13


  • Gast

Geplaatst op 23 januari 2011 - 18:20

Natuurlijk wel bessie, het feit dat de afgeleide nul is wil niet zeggen dat er een minimum of maximum is... dit zijn gewoon buigpunten. Voor de twee extremen moet je x elimineren, dus f uitdrukken in alleen y. Dat mag dus ook.

Veranderd door bessie, 23 januari 2011 - 18:21






0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures