Springen naar inhoud

`oneindige` limiet


  • Log in om te kunnen reageren

#1

Acquiesce

    Acquiesce


  • >25 berichten
  • 31 berichten
  • Gebruiker

Geplaatst op 26 februari 2011 - 20:36

Hallo,

Ik heb wat moeite met het bewijzen van een limiet.
Ik heb begrepen dat het bij een limiet die de vorm heeft van een breuk waarin teller en noemer beide naar oneindig gaan mogelijk is om de teller en noemer te delen door een `dominante term`.

Is mijn redenatie goed in onderstaande voorbeeld?

Geplaatste afbeelding
De gevraagde limiet is volgens mij dus gelijk aan 0, klopt dit?

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Siron

    Siron


  • >1k berichten
  • 1069 berichten
  • Ervaren gebruiker

Geplaatst op 26 februari 2011 - 21:00

Ik vind je redenering nogal onduidelijk, ik zou het zo aanpakken:

Te berekenen:
LaTeX
Dit is een onbepaaldheid van de vorm LaTeX dus ik pas de l'Hopital toe, dus zo:
LaTeX
De limiet van een product is gelijk aan het product van de limieten:
LaTeX
(Er geldt voor de rechterlimiet, de limiet van een constante is gelijk aan die constante):
Dus er blijft over:
LaTeX

Nu speelt het grondtal een grote rol, het bepaalt of de functie zal stijgen of dalen. Wanneer? Als je dit weet kan je de limiet berekenen (je kan natuurlijk ook de functie invoeren in je grafische rekenmachine als controle.)

Veranderd door Siron, 26 februari 2011 - 21:08


#3

Acquiesce

    Acquiesce


  • >25 berichten
  • 31 berichten
  • Gebruiker

Geplaatst op 26 februari 2011 - 23:03

Beste Siron,

Bedankt voor je duidelijk uitleg!

Ik vind het `delen door een dominante term` ook een wat vage aanpak. Dit is de manier waarop het boek `Basisboek Wiskunde` dit uitlegt. Volgens het boek is de limiet gelijk aan 0, maar de werkwijze ontgaat me.

Meteen 2 vragen:

- Welk boek kan ik het beste pakken voor zelfstudie over dit onderwerp?
- (misschien een hele domme vraag maar here it goes...) Je geeft aan dat het grondtal een grote rol speelt, maar is die niet gelijk aan het getal e dan? (Ln is toch niets anders als e log ?)

#4

Siron

    Siron


  • >1k berichten
  • 1069 berichten
  • Ervaren gebruiker

Geplaatst op 27 februari 2011 - 11:16

Beste Siron,

Bedankt voor je duidelijk uitleg!

Ik vind het `delen door een dominante term` ook een wat vage aanpak. Dit is de manier waarop het boek `Basisboek Wiskunde` dit uitlegt. Volgens het boek is de limiet gelijk aan 0, maar de werkwijze ontgaat me.

Meteen 2 vragen:

- Welk boek kan ik het beste pakken voor zelfstudie over dit onderwerp?
- (misschien een hele domme vraag maar here it goes...) Je geeft aan dat het grondtal een grote rol speelt, maar is die niet gelijk aan het getal e dan? (Ln is toch niets anders als e log ?)


Je moet de methode kiezen die je het beste ligt ;). Bij limietberekening heb je in sommige gevallen alternatieve methodes. Het delen door een dominante term is een goede aanpak, maar ik vind in dit geval mijn aanpak gemakkelijker.

Ik zou niet direct weten in welk boek je het beste limietberekening kunt oefenen.

En wat het grondtal betreft, heb je al exponentiele functies gezien?
Een exponentiele functie zal dalen als voor het grondtal a geldt: LaTeX
Een exponentiele functie zal stijgen als voor het grondtal a geldt:LaTeX

Dus in dit geval is je grondtal:LaTeX bijgevolg zal je functie dalen en dat betekent ook voor de limiet:
LaTeX

Probeer deze limiet eens grafisch af te leiden. Voer in je GRM de functie LaTeX en bekijk de grafiek. Wat gebeurt er met de grafiek als LaTeX ? Als je dit weet heb je de limiet.

Veranderd door Siron, 27 februari 2011 - 11:22


#5

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 27 februari 2011 - 11:36

Ik wil wel even opmerken dat er een kleine typfout in een eerdere berekening van Siron is geslopen ;) :

LaTeX


...
LaTeX

Voor de rest klopt alles wel denk ik :P.

PS @ Siron: pijlen in Latex maak je met '\rightarrow', '\leftarrow', '\Rightarrow' of '\Leftarrow' :P.
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#6

Safe

    Safe


  • >5k berichten
  • 9907 berichten
  • Pluimdrager

Geplaatst op 27 februari 2011 - 14:06

Hallo,

Ik heb wat moeite met het bewijzen van een limiet.
Ik heb begrepen dat het bij een limiet die de vorm heeft van een breuk waarin teller en noemer beide naar oneindig gaan mogelijk is om de teller en noemer te delen door een `dominante term`.

Is mijn redenatie goed in onderstaande voorbeeld?

Geplaatste afbeelding
De gevraagde limiet is volgens mij dus gelijk aan 0, klopt dit?

Je aanpak is goed, behalve dat je beter kunt delen door 3^n. Alle termen behalve 1 in de noemer gaan dan naar 0 als n naar oneindig gaat en deze aanpak is de bedoelde in de opgaven waar je mee bezig bent. Uiteraard is het antwoord 0.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures