Springen naar inhoud

[Wiskunde] Berekeningen in cirkel


  • Log in om te kunnen reageren

#1

Netra93

    Netra93


  • 0 - 25 berichten
  • 5 berichten
  • Gebruiker

Geplaatst op 07 maart 2011 - 19:50

Ik zit hier met een wiskunde probleem:

Heb een opgave over cirkels en segmenten, en nu moet ik onder andere een tegenpijl, straal etc. berekenen.
In de bijlage de opgave die ik even in autocad heb gezet.

Aangezien ik maar 2 gegevens heb gekregen vind ik het lastig om verder te komen, kan iemand mij helpen op weg te komen. Niet de hele uitwerking geven dus, maar gewoon een beginnetje.

Alvast bedankt!

Bijgevoegde miniaturen

  • Opdracht_7_MGD.jpg

Veranderd door Netra93, 07 maart 2011 - 19:50


Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

dirkwb

    dirkwb


  • >1k berichten
  • 4172 berichten
  • Moderator

Geplaatst op 07 maart 2011 - 20:47

Voor de straal R heb ik een methode (maar het kan vast makkelijker): teken een lijnstuk vanuit D evenwijdig aan AM naar AC en noem het snijpunt F. |DF| kan je berekenen. Dan geldt vanuit gelijkvormigheid:

LaTeX ,

hieruit is R op te lossen en voorts DE en AC.

Voor booglengte ADB: 360o is gelijk aan lengte 2*pi*r dus 130o is gelijk aan ...
Quitters never win and winners never quit.

#3

dirkwb

    dirkwb


  • >1k berichten
  • 4172 berichten
  • Moderator

Geplaatst op 07 maart 2011 - 20:56

Dit onderwerp past beter in het huiswerkforum en is daarom verplaatst.
Quitters never win and winners never quit.

#4

kotje

    kotje


  • >1k berichten
  • 3330 berichten
  • Verbannen

Geplaatst op 07 maart 2011 - 22:06

AMC=1/2AMB
ACM=90-AMC
sin ACM=R/(CD+R) => R
Stelling Pyth => raaklijn AC
Booglengte regel drie
ME met cos AME in rechth. driehoek AME
enz
Volgens mijn verstand kan er niets bestaan en toch bestaat dit alles?

#5

Netra93

    Netra93


  • 0 - 25 berichten
  • 5 berichten
  • Gebruiker

Geplaatst op 09 maart 2011 - 13:50

AMC=1/2AMB
ACM=90-AMC
sin ACM=R/(CD+R) => R
Stelling Pyth => raaklijn AC
Booglengte regel drie
ME met cos AME in rechth. driehoek AME
enz


ACM=90-AMC, heb je daar een theorie voor zie het verband niet.
Bedankt voor de antwoorden kom in elk geval weer stukje verder

#6

mathfreak

    mathfreak


  • >1k berichten
  • 2460 berichten
  • Ervaren gebruiker

Geplaatst op 09 maart 2011 - 14:18

Een raaklijn aan een cirkel staat altijd loodrecht op de straal naar het raakpunt, en dat is precies de eigenschap waar kotje gebruik van maakt.
"Mathematics is a gigantic intellectual construction, very difficult, if not impossible, to view in its entirety." Armand Borel

#7

Netra93

    Netra93


  • 0 - 25 berichten
  • 5 berichten
  • Gebruiker

Geplaatst op 11 maart 2011 - 19:38

Ik loop vast bij Sin ACM= R/(CD+R)
ACM= 35.32175
CD= 62.32175

Kan iemand deze voor mij uitwerken?

#8

Jan van de Velde

    Jan van de Velde


  • >5k berichten
  • 44849 berichten
  • Moderator

Geplaatst op 13 maart 2011 - 20:54

Iemand die hier een handje kan toesteken?
ALS WIJ JE GEHOLPEN HEBBEN....
help ons dan eiwitten vouwen, en help mee ziekten als kanker en zo te bestrijden in de vrije tijd van je chip...
http://www.wetenscha...showtopic=59270

#9

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 13 maart 2011 - 21:05

Ik heb niet heel het topic doorgelezen, maar veronderstellende dat die getallen, en die formule klopt:
Sin ACM= R/(CD+R) <=> (sin ACM) * (CD + R) = R <=> (sin ACM) * CD + (sin ACM) * R = R <=> (sin ACM) * CD = R - R* (sin ACM) = R * (1 - (sin ACM)) <=> R = ...
Geraak je er zo uit?
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#10

Netra93

    Netra93


  • 0 - 25 berichten
  • 5 berichten
  • Gebruiker

Geplaatst op 14 maart 2011 - 12:24

Nee ga er niet uitkomen, kan iemand mij de R geven moet vanavond de opdracht inleveren.
Please

#11

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 14 maart 2011 - 14:10

Nee ga er niet uitkomen, kan iemand mij de R geven moet vanavond de opdracht inleveren.
Please

Ik heb ze je toch gegeven? R * (1 - (sin ACM)) = (sin ACM) * CD <=> R = ((sin ACM) * CD) / (1 - (sin ACM)). Nu moet jij enkel nog je waarden invullen...
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#12

Netra93

    Netra93


  • 0 - 25 berichten
  • 5 berichten
  • Gebruiker

Geplaatst op 14 maart 2011 - 20:52

Oke thanks allen!
Het is gelukt ik heb allle antwoorden.

#13

aadkr

    aadkr


  • >5k berichten
  • 5441 berichten
  • Pluimdrager

Geplaatst op 14 maart 2011 - 21:06

Volg gewoon de berekening die Kotje gaf:
AMC=1/2 .129,3565 =64,6782 graden
ACM= 90 -64,6782=25,3218 graden
Sin 25,3218 graden =R /(62,713+R)=0,42770
0,42770 .(62,713+R)=R
26,8224 + 0,42770 .R=R
26,8224=0,523.R
(sorry voor mijn bericht. Je hebt alle antwoorden al gevonden).

Veranderd door aadkr, 14 maart 2011 - 21:08






0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures