Springen naar inhoud

Botsing tussen twee ballen


  • Log in om te kunnen reageren

#1

Dahkla91

    Dahkla91


  • 0 - 25 berichten
  • 19 berichten
  • Gebruiker

Geplaatst op 08 maart 2011 - 01:41

massa bal 1=m1
massa bal 2=m2

voor de botsing:
snelheid bal1=v1
snelheid bal2= v2

na de botsing:
m/s bal1=u1
m/s bal2=u2

Bij deze opgaven moet ik de snelheid na de botsing berekenen van beide ballen.
Ik heb deze gegevens van elk opgave:
1) m1=m2
v1=2 m/s
v2=0 m/s
e1=1
e2=1

2) m2=5m1
v1=2 m/s
v2=0 m/s
e1=1
e2=1

3) m1=m2
v1=2 m/s
v2=0 m/s
e1=0
e2=0

Bij opgave 3) kon ik niet verder dan dit en heb ik gebruik gemaakt van de Wet van Behoud van Impul:
m1*2 + m2*0= m1*u1 + m2*u2
2=u1+u2 ----> u1=2-u2

Veranderd door Dahkla91, 08 maart 2011 - 01:43


Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

thermo1945

    thermo1945


  • >1k berichten
  • 3112 berichten
  • Verbannen

Geplaatst op 08 maart 2011 - 04:32

... en heb ik gebruik gemaakt van de Wet van Behoud van Impuls ...

Dat is goed, want die geldt bij elke botsing.
Het is bijna zeker, dat je de botsing als volledig elastisch mag beschouwen.
Dan geldt ook, dat de totale kinetische energie niet verandert. Pas dat toe.
Je krijgt twee vergelijkingen met twee onbekenden. De laatste is kwadratisch. Daardoor krijg je 2 oplossingen.
De ene oplossing beschrijft de situatie voor de botsing, de andere erna.

#3

Dahkla91

    Dahkla91


  • 0 - 25 berichten
  • 19 berichten
  • Gebruiker

Geplaatst op 08 maart 2011 - 09:56

Dan geldt ook, dat de totale kinetische energie niet verandert. Pas dat toe.


Als de botsing elastisch is, dus e1=1 en e2=1, moet je gebruik maken van de Wet van Behoud van Kinetische Energie?

1) m1*2 + m2*0= m1*u1 + m2*u2
2=u1+u2 ----> u1=2-u2

m1*4 + 0 = m1*u1^2 + m2*u2^2
4=u1^2 + u2^2

Klopt dat?

Hoe moet je het doen bij 3) waar e1=0 en e2=0? Daar kan je toch niet de Wet van Behoud van Kinetische Energie gebruiken?

#4

thermo1945

    thermo1945


  • >1k berichten
  • 3112 berichten
  • Verbannen

Geplaatst op 08 maart 2011 - 17:12

Als de botsing elastisch is, dus e1=1 en e2=1, moet je gebruik maken van de Wet van Behoud van Kinetische Energie?

Dat is geen Wet.

Daar kan je toch niet de Wet van Behoud van Kinetische Energie gebruiken?

Inderdaad. Dat is een volledig onelastische botsing.

#5

Dahkla91

    Dahkla91


  • 0 - 25 berichten
  • 19 berichten
  • Gebruiker

Geplaatst op 17 maart 2011 - 20:40

1) m1=m2
v1=2 v2=0

m1*2 + m2*0= m1*u1 + m2*u2
2=u1+u2
u1=2-u2

0,5m1*2^2 + 0,5m2*0^2 =0,5m1*(u1)^2 + 0,5m2*(u2)^2
0,5m1*4 + 1/20 = 0,5m1*u1^2 + 0,5m2*(u2)^2
4=u1^2 + u2^2

4=(2-u2)^2 + u2^2
4=4-4u2+u2+u2^2
0= -2u2+u2^2
u2(u2-2)=0
u2=0 of u2=2
u1=2 of u1 =0

klopt dit?

Bij m2=5m1
m2=100m1
die beide v1=2 v2=0 hebben, zijn de u1 en u2 toch hetzelfde als bij m1=m2 met v1=2 v2=0 (die ik net had opgelost)?

Veranderd door Dahkla91, 17 maart 2011 - 20:44


#6

aadkr

    aadkr


  • >5k berichten
  • 5441 berichten
  • Pluimdrager

Geplaatst op 17 maart 2011 - 22:46

Bij opgave 1 heb je te maken met een volkomen veerkrachtige botsing.
De massa van bal1 =m1 en de massa van bal 2 =m1
De snelheid van bal1 voor de botsing noemen we v1 en de snelheid van bal2 voor de botsing noemen we v2
De snelheid van bal 1 na de botsing noemen we c1 en de snelheid van bal2 na de botsing noemen we c2

Op het moment van de grootste vervorming van de 2 ballen hebben beide ballen de gemeenschappelijke snelheid u
De wet van behoud van massaimpuls geldt niet alleen voor de botsing en na de botsing ,maar ook op elk moment tijdens de botsing
LaTeX
LaTeX
De snelheid van bal 1 voor de botsing is +2 m/s Op het moment van grootste indrukking heeft bal1 een snelheid van +1 m/s =u
LaTeX
LaTeX
De snelheid van bal 1 na de botsing is dan c1
LaTeX
LaTeX
LaTeX
LaTeX
LaTeX

#7

Dahkla91

    Dahkla91


  • 0 - 25 berichten
  • 19 berichten
  • Gebruiker

Geplaatst op 18 maart 2011 - 10:02

LaTeX


[LaTeX


Geldt deze antwoorden ook voor m2=5m1 en m2=100m1 ?
En wat betekent LaTeX ?

Veranderd door Dahkla91, 18 maart 2011 - 10:04


#8

aadkr

    aadkr


  • >5k berichten
  • 5441 berichten
  • Pluimdrager

Geplaatst op 18 maart 2011 - 19:25

Als m2=5.m1 , dan krijg je uiteraard een andere uitkomst.
Ik zal deze opgave voor je uitrekenen , en daarna wil ik je graag een rekenvoorbeeld geven, waarin duidelijk wordt welke rekenmethode ik nu eigenlijk toepas.
Bal1 heeft massa=m1
Bal2 heeft massa =5.m1
Bal1 heeft beginsnelheid =+2 m/s
Bal2 heeft beginsnelheid =0 m/s
Bal1 heeft eindsnelheid c1
Bal2 heeft eindsnelheid c2
De botsing is volkomen veerkrachtig. De botsingscoefficient LaTeX =1
We kiezen een positieve richting voor de snelheid ,snelheden die naar rechts toe zijn gericht geven we aan met een + teken, en snelheden die naar links zijn gericht, geven we aan met een - teken.
v1 is dan +2 m/s en v2=0 m/s
Op het moment van de grootste vervorming hebben de beide ballen dezelfde snelheid u. Deze snelheid wordt de gemeenschappelijke snelheid u genoemd.
De wet van behoud van impuls geldt op elk tijdstip gedurende de botsing.
Dus geldt: LaTeX
LaTeX
LaTeX m/s
We gaan ons nu concentreren op bal 1
Bal 1 had voor de botsing een snelheid van +2 m/s (naar rechts)
Op het moment van grootste vervorming heeft bal1 een snelheid van +1/3 m/s (naar rechts)
We gaan ons nu afvragen welke snelheid ( k1 )we bij de beginsnelheid van bal1 moeten optellen om te komen tot de gemeenschappelijke snelheid van bal 1
Ofwel in formulevorm v1 +k1 =u Hieruit volgt k1=u -v1 =+1/3 -(+2)=- 5/3 m/s
We hebben dus die snelheid k1 opgeteld bij v1 om tot de snelheid u te komen.
Wat we nu gaan doen is nogmaals die snelheid k1 bij u optellen om te komen tot de eindsnelheid c1 van bal 1
Dus
c1=u+k1=+1/3 +(-5/3)=- 4/3 m/s
We gaan ons nu concentreren op bal2
Bal 1 had voor de botsing een snelheid van 0 m/s
Op het moment van grootste vervorming heeft bal2 een snelheid van + 1/3 m/s ( naar rechts).
We gaan ons nu afvragen welke snelheid (k2) we bij de beginsnelheid van bal2 moeten optellen om te komen tot de gemeenschappelijke snelheid van bal2.
v2+k2=u Hieruit volgt: k2 =u -v2 =+ 1/3 -0 =+ 1/3 m/s
We hebben dus die snelheid k2 opgeteld bij v2 om tot de snelheid u te komen
Wat we nu gaan doen is nogmaals die snelheid k2 optellen bij u om tot de eindsnelheid c2 van bal2 te komen.
c2=u+k2=+ 1/3 +(+ 1/3)= + 2/3 m/s
Met de wet van behoud van kinetische energie kun je controleren of beide eindsnelheden juist zijn.

#9

aadkr

    aadkr


  • >5k berichten
  • 5441 berichten
  • Pluimdrager

Geplaatst op 18 maart 2011 - 19:55

Er staat een typfout in mijn bericht
""We gaan ons nu concentreren op bal2""
""Bal 1 heeft voor de botsing een snelheid van 0 m/s''
Dit moet natuurlijk zijn ""Bal2 heeft voor de botsing een snelheid van 0 m/s

#10

aadkr

    aadkr


  • >5k berichten
  • 5441 berichten
  • Pluimdrager

Geplaatst op 20 maart 2011 - 18:51

Nog even terugkomen op de formules, die ik heb gebruikt voor de berekening van de volkomen veerkrachtige botsing met botsingscoefficient LaTeX =1
Voor het berekenen van de eindsnelheid van bal1 (c1) heb ik de volgende formules gebruikt:
LaTeX
LaTeX
We kunnen nu uit de formules de snelheidsvector LaTeX elimineren
LaTeX Hieruit volgt: LaTeX
Dit ingevuld in de tweede formule geeft:
LaTeX
We hebben nu een nieuwe formule gevonden voor het berekenen van de snelheid van bal1 na de botsing :
Deze formule luidt:
LaTeX
Op dezelfde manier kunnen we uit de 2 formules die gelden voor bal2 afleiden dat geldt:
LaTeX
Dus de berekening van een centrale botsing die volkomen veerkrachtig is, is nu vrij simpel
Bereken eerst de gemeenschappelijke snelheid ,die de beide ballen hebben als de indrukking maximaal is.
Vul daarna de 2 formules in
LaTeX
en
LaTeX
Wel moet ik benadrukken dat de twee formules alleen gelden voor een volkomen veerkrachtige botsing met LaTeX =1

#11

aadkr

    aadkr


  • >5k berichten
  • 5441 berichten
  • Pluimdrager

Geplaatst op 21 maart 2011 - 23:52

Ik zal voor de volledigheid nog even de derde opgave behandelen.
Die luidde als volgt:
m1=m2
v1=+2 m/s
v2=0 m/s
LaTeX =0
Op het moment dat beide ballen volledig zijn ingedrukt hebben ze beide de gemeenschappelijke snelheid u
Eindsnelheid van bal1 na de botsing = c1
Eindsnelheid van bal2 na de botsing =c2
De botsing is een volkomen onveerkrachtige botsing met botsingscoefficient LaTeX =0
Snelheden die naar rechts wijzen geven we aan met een +teken
Snelheden die naar links wijzen geven we aan met een - teken
Dus: v1=+2 m/s en v2=0 m/s
We beginnen de berekening altijd met het uitrekenen van die gemeenschappelijke snelheid u
LaTeX +1 m/s
Op het moment dat de 2 ballen hun maximale indrukking hebben bereikt ,hebben ze beide de gemeenschappelijke snelheid u=+1 m/s
Dit is tevens de eindtoestand van deze botsing . De beide ballen veren niet meer terug. Ze bewegen zich verder voort met hun gemeenschappelijke snelheid u (Ze behouden hun maximale vervorming , deze vervorming is blijvend )
Met andere woorden . De eindsnelheid van bal1 na de botsing =u en de eindsnelheid van bal1 na de botsing is u
In formulevorm:
c1=u en c2=u
c1=+1 m/s en c2=+1 m/s





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures