Springen naar inhoud

Elektronenschillen


  • Log in om te kunnen reageren

#1

Robin4

    Robin4


  • >25 berichten
  • 70 berichten
  • Ervaren gebruiker

Geplaatst op 29 maart 2011 - 12:04

Hallo iedereen,


In een atoom zijn er dus elektronenschillen. Het uitsluitingsprincipe van Pauli verbiedt het om indentieke fermionen vier dezelfde kwantumtoestanden te hebben. Dus kunnen elektrnen binnen een atoom geen dezelfde kwantumtoestanden aannemen, dit probleem wordt opgelost door het invoeren van het spinkwantumgetal. Hierdoor kunnen twee elektronen op de eerste schil, allebei op die schil 'zitten'.

Nu is mijn vraag: Waarom kunnen er op de tweede(L)-schil dan ineens acht, op de M-schil 18 enzovoort?

Als dit mogelijk is gelieve een niet te wiskundig en verstaanbare uitleg, zit namelijk nog maar in het tweede middelbaar


Alvast bedankt:

Robin4

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Sjitty

    Sjitty


  • >250 berichten
  • 320 berichten
  • Ervaren gebruiker

Geplaatst op 29 maart 2011 - 12:47

Voor iedere schil (hoofdkwantumgetal LaTeX ) zijn er voor elk elektronpaar genoeg verschillende energieniveaus (ter hoogte van het basale energieniveau van de schil, soms toch nog hoger dan het laagste energieniveau van de volgende hogere schil, maar goed, dat is een ander onderwerp) om elk elektron te discrimineren, overeenkomend met het nevenkwantumgetal LaTeX , voorgesteld door de orbitaal letters s,p,d enz... met LaTeX
Voor de twee elektronen op hetzelfde nevenkwantumgetal bestaat er de discriminatie in spinkwantumgetal (-1/2 of 1/2)

bron: http://nl.wikipedia....ki/Kwantumgetal

Veranderd door Sjitty, 29 maart 2011 - 12:55


#3

physicalattraction

    physicalattraction


  • >1k berichten
  • 3102 berichten
  • Moderator

Geplaatst op 29 maart 2011 - 14:00

Als je het niet wiskundig en niet natuurkundig wil beschouwen, maar puur fenomenologisch, dan kun je het als volgt inzien:

Hang aan elk elektron een kaartje met daarop een getalletje voor n, l, m en s. Er gelden een aantal randvoorwaarden:
  • n is altijd positief en begint bij 1
  • l is nooit negatief en altijd kleiner dan n
  • de absolute waarde van m is nooit groter dan l
  • s is altijd -1/2 of +1/2
Zorg ervoor dat er geen elektronen zijn met twee dezelfde kaartjes. En voila, alles volgt hieruit.

Voor n = 1:
l is altijd kleiner dan n, dus kleiner dan 1, maar nooit negatief, dus l = 0
de absolute waarde van m is nooit groter dan l, dus m = 0
Twee mogelijkheden: (n,l,m,s) = (1,0,0,-1/2), = (1,0,0,+1/2)

Voor n = 2:
l is altijd kleiner dan, dus kleiner dan 2, maar nooit negatief, dus l = 0 of l = 1
de absolute waarde van m is nooit groter dan l, dus m = 0 als l = 0 of m = -1, m = 0 of m = 1 als l = 1
Acht mogelijkheden: (n,l,m,s) = (2,0,0,-1/2), (2,0,0,+1/2), (2,1,-1,-1/2), (2,1,-1,+1/2), (2,1,0,-1/2), (2,1,0,+1/2), (2,1,1,-1/2), (2,1,1,+1/2)

Voor jou de oefening om voor n = 3 achttien mogelijkheden te vinden.

#4

Robin4

    Robin4


  • >25 berichten
  • 70 berichten
  • Ervaren gebruiker

Geplaatst op 29 maart 2011 - 14:12

allebei hartstikke bedankt

#5

Robin4

    Robin4


  • >25 berichten
  • 70 berichten
  • Ervaren gebruiker

Geplaatst op 17 april 2011 - 11:21

nu komt ineens deze vraag in mij op: waarom kan de buitenste elektronenschil er dan maar 8 bezitten?

alvast bedankt terug, robin4

#6

ZVdP

    ZVdP


  • >1k berichten
  • 2097 berichten
  • VIP

Geplaatst op 17 april 2011 - 11:38

Theoretisch gezien kunnen er meer dan 8 zitten, maar in de praktijk komen we daar gewoon nooit met de bestaande elementen.
Mocht het atoom met atoomnummer 300 bestaan...

Hetzelfde geldt voor de andere schillen. In de praktijk is de maximale bezetting (voor Ununoctium)
2, 8, 18, 32, 32, 18, 8 (K, L, ...)
Maar theoretisch is dit
2, 8, 18, 32, 50, 72, 98
"Why must you speak when you have nothing to say?" -Hornblower
Conserve energy: Commute with a Hamiltonian





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures