Springen naar inhoud

Limiet


  • Log in om te kunnen reageren

#1

dirkwb

    dirkwb


  • >1k berichten
  • 4173 berichten
  • Moderator

Geplaatst op 03 april 2011 - 11:43

LaTeX


Weet iemand hoe je bovenstaande limiet met de hand aanpakt?
Quitters never win and winners never quit.

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

TD

    TD


  • >5k berichten
  • 24052 berichten
  • VIP

Geplaatst op 03 april 2011 - 12:11

Je kan het doen met stukjes reeksontwikkeling.
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#3

janamdo

    janamdo


  • >250 berichten
  • 324 berichten
  • Ervaren gebruiker

Geplaatst op 03 april 2011 - 22:04

LaTeX




Weet iemand hoe je bovenstaande limiet met de hand aanpakt?

Als je x = 0 invult ?

#4

In physics I trust

    In physics I trust


  • >5k berichten
  • 7384 berichten
  • Moderator

Geplaatst op 03 april 2011 - 22:06

Als je x = 0 invult ?


Dan krijg je een onbepaaldheid 0/0. De juiste oplossing bestaat er dus in om de goniometrische functies te gaan benaderen door hun reeksontwikkeling, zoals TD al zei.
"C++ : Where friends have access to your private members." — Gavin Russell Baker.

#5

janamdo

    janamdo


  • >250 berichten
  • 324 berichten
  • Ervaren gebruiker

Geplaatst op 03 april 2011 - 22:13

Waarom gaat het via een reeksontwikkeling ..is er geen andere methode dan?
dit lees ik ergens..of is dit te simpel? of gaat het via een reeks gemakkelijker?
De regel van L'Hopital stelt dat wanneer je in een limietopgave je punt invult en een van de volgende 2 onbepaaldheden krijgt: 0/0 of ¥/¥, dat je dan teller en noemer afzonderlijk mag afleiden.

Veranderd door janamdo, 03 april 2011 - 22:16


#6

In physics I trust

    In physics I trust


  • >5k berichten
  • 7384 berichten
  • Moderator

Geplaatst op 03 april 2011 - 22:20

Je mag in zulke gevallen L'Hôpital gebruiken als aan de randvoorwaarden voldaan is.

Maar probeer dat eens in dit geval? Aangezien 0 een zevenvoudig nulpunt is van de noemer, en de afgeleiden van sin(tan(x)) niet zo eenvoudig blijven bij herhaald afleiden (kettingregel), is het een pak eenvoudiger de reeksontwikkelingen in te vullen.
"C++ : Where friends have access to your private members." — Gavin Russell Baker.

#7

TD

    TD


  • >5k berichten
  • 24052 berichten
  • VIP

Geplaatst op 03 april 2011 - 22:27

Het kan met l'Hôpital. Je zal teller en noemer zeven keer moeten afleiden. Veel plezier met de zevende afgeleide van de teller ;).

Nu, zelf met reeksontwikkelingen is het een beetje gepruts hoor. Het blijft een 'weinig leuke opgave' om met de hand te doen, vind ik.
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#8

janamdo

    janamdo


  • >250 berichten
  • 324 berichten
  • Ervaren gebruiker

Geplaatst op 03 april 2011 - 22:31

Aha , want als je de teller en noemer differenteert en weer x= o invult kan dat weer 0/0 opleveren..zo blijf je wel een tijd bezig met de hand totdat er wel een getal uitkomt
Ja ik lees de post net erboven...

Het kan met l'Hôpital. Je zal teller en noemer zeven keer moeten afleiden. Veel plezier met de zevende afgeleide van de teller ;).

Nu, zelf met reeksontwikkelingen is het een beetje gepruts hoor. Het blijft een 'weinig leuke opgave' om met de hand te doen, vind ik.

maar je kunt toch niet zeggen van te voren hoeveel keren je l'hopital moet gebruiken?..of wel?

Veranderd door janamdo, 03 april 2011 - 22:29


#9

TD

    TD


  • >5k berichten
  • 24052 berichten
  • VIP

Geplaatst op 03 april 2011 - 22:37

Met wat ervaring, kan je dat 'voorspellen'.
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#10

In physics I trust

    In physics I trust


  • >5k berichten
  • 7384 berichten
  • Moderator

Geplaatst op 03 april 2011 - 22:38

Nu, zelf met reeksontwikkelingen is het een beetje gepruts hoor. Het blijft een 'weinig leuke opgave' om met de hand te doen, vind ik.

maar je kunt toch niet zeggen van te voren hoeveel keren je l'hopital moet gebruiken?..of wel?


Ik dacht net, ik zal er eens aan beginnen om te zien of er effectief 7 nulpunten in de teller zitten, maar...

LaTeX

En dat is voor één term bij de eerste keer afleiden ;)


Je kan niet met zekerheid zeggen dat het effectief 7 keer een nulpunt wordt, maar je kan wel zien dat er een mogelijkheid is om eventueel 7 keer een nulpunt te hebben in teller en noemer. De vrij symmetrische vorm van de teller kan je wel doen 'aanvoelen' dat de kans op een dubbel nulpunt (teller/noemer) reëel is, en je dus intuïtief doen kiezen om het eerder met een reeksontwikkeling aan te pakken dan met l'Hôpital...
"C++ : Where friends have access to your private members." — Gavin Russell Baker.

#11

janamdo

    janamdo


  • >250 berichten
  • 324 berichten
  • Ervaren gebruiker

Geplaatst op 03 april 2011 - 22:51

Ok, dan met een reeksontwikkeling..hoe werkt dat dan in het algemeen?

#12

TD

    TD


  • >5k berichten
  • 24052 berichten
  • VIP

Geplaatst op 03 april 2011 - 22:53

Je kan hier naar een voorbeeld kijken.
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#13

janamdo

    janamdo


  • >250 berichten
  • 324 berichten
  • Ervaren gebruiker

Geplaatst op 03 april 2011 - 23:09

Je kan hier naar een voorbeeld kijken.

Bedankt dat is wel handig zo

#14

janamdo

    janamdo


  • >250 berichten
  • 324 berichten
  • Ervaren gebruiker

Geplaatst op 03 april 2011 - 23:17

Is gemakkelijk zo met die reeksen..alleen moet je wel de reeksen paraat hebben
Bekend zijn de limieten van polynomen en als je een reeks in een polynoomvorm kunt schrijven dan volg je weer de standaard rekenregels van limieten weer..toch?

Veranderd door janamdo, 03 april 2011 - 23:17


#15

In physics I trust

    In physics I trust


  • >5k berichten
  • 7384 berichten
  • Moderator

Geplaatst op 03 april 2011 - 23:23

Het idee bestaat er inderdaad in dat je gaat benaderen door een Taylorreeks die een polynoomvorm heeft.

Je zegt dat je de reeksen paraat moet hebben, maar dat valt wel mee, ingeval je ze vergeten bent, kan je via de algemene formule de Taylorreeks opnieuw opstellen. Dus moet je eigenlijk slechts één formule onthouden.
"C++ : Where friends have access to your private members." — Gavin Russell Baker.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures