Springen naar inhoud

K waarde verkeerd?


  • Log in om te kunnen reageren

#1

devvvvy

    devvvvy


  • 0 - 25 berichten
  • 13 berichten
  • Gebruiker

Geplaatst op 12 mei 2011 - 17:36

Voor ons schoolproject is de bedoeling een WTW-unit te maken. Het idee heb ik gevisualiseerd in onderstaande link. Benodigd is de lengte van de pijp. Ik heb het als volgt aangepakt:

http://imageshack.us...plaatjewtw.jpg/

IDi = 0.04m
Ido = 0.041 m
Odi = 0.05 m
Odo = 0.051 m

φk = 25 kg/min (leidingwater)
φw = 20 kg/min (afvalwater)

Tk = 15 C
Tw = 30 C

λkoper = 390 W/m K

α = 48/11 * λ/D
αDIi = 42545.5 W/m2 K
αDIo = 32727.3 W/m2 K

AIDi = ľ π Idi = 1.257e-3 m2
AIDo = 2.1237e-3 m2
Aw = AIDo – AIDi = 8.67e-4 m2

(1) k*Aw = 1 / ( 1/(αIDi*AIDi) + ln(IDo/IDi)/(2πλL) + 1/(αIDo*AIDo) )

(2) k = 1 / ( IDo/(αIDi*IDi) + IDo*ln(IDo/IDi)/(2λ) + 1/αIDo )

Hieruit volgt k = 17874.6, waar ik al grote vraagtekens bij zet.

Uit vgl. (1) volgt dan L = 2.01 e-4 m, dus 0.2 mm. Ook hierbij grote vraagtekens.


Een tweede manier was m.b.v. de volgende formule:
(3) dQ/dt = φw Cp (Tin,w – Tuit,w) = φk Cp (Tin,k – Tuit,k)
Vervolg met de formule:
(4) Aw = dQ/dt /(k ΔTln)

Hiermee wordt een andere k berekend.

Maar aangezien ik geen Tuit heb, zie ik deze formule als onbruikbaar. Ik dacht zelf aan Tuit,k = Tuit,w = (Tin,w – Tin,k)/2 = 22.5 C
Omschrijven van (4) (en omschrijven temperaturen naar K en debiet naar kg/s):
Tuit = (φw*Tin,w – φk*Tin,k) / (φw – φk) = 228 K (dat is vreemd).
ΔTa = Tin,w – Tuit
ΔTb = Tin,w – Tuit
ΔTln = (ΔTa – ΔTb)/ln(ΔTa/ΔTb) <-- deze ln is niet mogelijk.

Heeft iemand ideeen? Heb ik misschien andere waarden verkeerd eringezet, of verkeerde formules gebruikt?

Groet,
Freek

PS. het vorige topic van mij kan verwijderd.

Bron formules: boek Procestechnische constructies (TU/e dictaat)

Veranderd door devvvvy, 12 mei 2011 - 17:40


Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Fred F.

    Fred F.


  • >1k berichten
  • 4168 berichten
  • Pluimdrager

Geplaatst op 12 mei 2011 - 18:09

Gelieve niet telkens een nieuw topic te openen alleen omdat je wat aan je getallen verandert!

Zoals ik toen al schreef: lees eerst eens dit topic

De k van de koperen pijp doet vrijwel niet terzake. Het gaat om de partiŽle warmteoverdrachtscoefficienten van het leidingwater en het afvalwater aan de pijpwanden. Heb je wel eens van Nusselt, Reynolds en Prandtl gehoord? Staat daar niets over in dat TU/e dictaat? Gooi het dan maar weg.

Dit vrij downloadbare boek van het MIT is veel beter. Lees vooral hoofdstuk 8 over convectie.

Als dat te moeilijk voor je is dan begin je met dit vrij downloadbare boek. Lees vooral hoofdstuk 3 over convectie. Helaas is dit boek niet vrij van fouten maar dat is van latere zorg.
Hydrogen economy is a Hype.

#3

devvvvy

    devvvvy


  • 0 - 25 berichten
  • 13 berichten
  • Gebruiker

Geplaatst op 12 mei 2011 - 21:29

Bedankt voor de link naar het boek (de eerste link deed het niet, 2e wel)! Heeft me enorm geholpen. Ik ben nu tot zover:

Water:

T = 15 C: rho = 999,10 kg/m3; Cp = 4186 J/kgK; mu = 1138,0e-6 Pa s; Pr = 8,13; lapda = 0,59 W/m K
T = 30 C: rho = 995,65 kg/m3; Cp = 4178 J/kgK; mu = 797,68e-6 Pa s; Pr = 5,49; lapda = 0,61 W/m K

In het kort:

Warm
Re = 13301,5 --> turbulent (> 2300)
Pr = 5,463
Nu = 90,33
alpha = 1377,5 W/m2K

Koud
Dh = 0,018 m
Re = 2561,45 --> turbulent (> 2300)
Pr = 8,074
Nu = 28,27
alpha = 926,63 W/m2K

Deze waarden lijken me zeer aannemelijk.
Ik heb gezien dat je van laminaire stroming zeer gemakkelijk de karakteristieke lengte kan bepalen. Ik kan dit echter niet vinden over turbulente stromingen. Kan ik dat bepalen aan de hand van bovenstaande gegevens?

#4

Fred F.

    Fred F.


  • >1k berichten
  • 4168 berichten
  • Pluimdrager

Geplaatst op 12 mei 2011 - 21:58

Link voor dat gratis MIT boek: http://www.wetenscha...s...st&p=423872

Ik heb nu geen tijd om je berekeningen te checken maar als je dat andere topic van Gosse gelezen hebt moet je nu weten dat je die alphas (alpha wordt internationaal h genoemd) moet combineren, met eventuele fouling factors, om de U van de warmtewisselaar te berekenen. Als jouw getallen kloppen zal die U ongeveer 500 W/m2.K zijn.

Samen met het logaritmisch gemiddelde temperatuursverschil (LMTD) tussen afvalwater en leidingwater kun je dan het benodigde oppervlak A, en dus ook de lengte L, berekenen voor een bepaalde uitlaattemperatuur van het opgewarmde leidingwater.

dQ/dt = U * A * LMTD = φk * Cpk * (Tk2 - Tk1) = φw * Cpw * (Tw1 - Tw2)

Wel in consistente eenheden werken dus bijvoorbeeld φ in kg/s (niet kg/min)
Hydrogen economy is a Hype.

#5

devvvvy

    devvvvy


  • 0 - 25 berichten
  • 13 berichten
  • Gebruiker

Geplaatst op 12 mei 2011 - 23:14

1/U = 1/h1 + 1/h2 + Rf1 + Rf2 + Dh/lapda

Voor Rf1 heb ik 0,0002 genomen, voor Rf2 0,00009 (geschat mbv deze site.)

Hieruit volgt U = 553,79 w/m2K (met Dh = 0,018 m en lapda = 390 W/m K (van koper)).

Uit de door u/jou gegeven formule blijkt dat:

A = φk * Cpk * (Tk2 - Tk1) / (U * LMTD)

LMTD = ( (Tin,w - Tuit) - (Tuit - Tin,k) ) / ln((Tin,w - Tuit)/(Tuit - Tin,k)) = 14,43 m2K/W

A = 25/60 * 4186 * (25-15) / (553,79 * 14,43) = 2,183 m2

Hoe moet ik deze A vertalen in de z-richting (aangezien ik niet anders zie dan alleen in de x,y-richting gewerkt te hebben.
Of ligt het antwoord in de orde van 2,183 = ʃAw dz (dan is z, ofwel L, wel erg groot)?

#6

devvvvy

    devvvvy


  • 0 - 25 berichten
  • 13 berichten
  • Gebruiker

Geplaatst op 13 mei 2011 - 07:43

Voor de lengte heb ik L = A/ (2 * pi* ri) = 2,183 / (2*pi*0,04) = 8,69 m.

Welke waarde kan ik het beste veranderen om de benodigde lengte te verlagen? Ik dacht zelf aan de gewenste uitgaande temperatuur lager pakken, of de Dh kleiner maken (waardoor h groter, waardoor U groter, waardoor A kleiner). Het is in praktisch opzicht niet handig om de binnenste diameter aan te passen.

Misschien komt er nog een vraag over het rekening houden met de buitenlucht, met en zonder isolatie van de buis. Daar heb ik nog niet naar gekeken, dus dat moet ik eerst onderzoeken.

#7

Fred F.

    Fred F.


  • >1k berichten
  • 4168 berichten
  • Pluimdrager

Geplaatst op 13 mei 2011 - 08:56

A = 25/60 * 4186 * (25-15) / (553,79 * 14,43) = 2,183 m2

Hieruit leid ik af dat je 25 kg/min koude water 10 graden opwarmt van 15 naar 25 oC
Dus je 20 kg/min warme water koelt dan 12,5 graden af van 30 naar 17,5 oC

LMTD = ( (Tin,w - Tuit) - (Tuit - Tin,k) ) / ln((Tin,w - Tuit)/(Tuit - Tin,k)) = 14,43

Ik zie niet welke temperaturen je in deze formule gebruikt hebt maar de LMTD zal volgens mij slechts 3,6 oC zijn.

Voor de lengte heb ik L = A/ (2 * pi* ri) = 2,183 / (2*pi*0,04) = 8,69 m.

ri is niet 0,04 maar 0,02 want Di = 0,04 m.
Hydrogen economy is a Hype.

#8

devvvvy

    devvvvy


  • 0 - 25 berichten
  • 13 berichten
  • Gebruiker

Geplaatst op 13 mei 2011 - 10:00

Hieruit leid ik af dat je 25 kg/min koude water 10 graden opwarmt van 15 naar 25 oC
Dus je 20 kg/min warme water koelt dan 12,5 graden af van 30 naar 17,5 oC


Klopt.
25*dT1 = 20*dT2 en 15+dT1 = 30-dT2
25dT1 = 20*(15-dT1)
45dT1 = 300
dT1 = 6.67 oC, dus dT2 = 25/20*6,67 = 8.33 oC.
Tu = 15+6.67 = 30 - 8.33 = 21.67 oC
Dit zal dan de gemiddelde temperatuur zijn bij L = oneindig, zonder externe energieverliezen.

LMTD = ( (Tin,w - Tuit) - (Tuit - Tin,k) ) / ln((Tin,w - Tuit)/(Tuit - Tin,k))
LMTD = ( (30 - 21.67) - (21.67 - 15) ) / ln((30 - 21.67)/(21.67 - 15)) = 7.469 oC

A = 25/60 * 4186 * (21.67-15) / (553,79 * 7.469) = 2.812 m2

L = 2,812 / (2 * pi * 0.02) = 22.377 m

Klopt dit wel?

Ik zie niet welke temperaturen je in deze formule gebruikt hebt maar de LMTD zal volgens mij slechts 3,6 oC zijn.


Ik heb waarschijnlijk dT gebruikt ipv Tuit (omdat ik dat net bijna (weer?) fout deed).

Veranderd door devvvvy, 13 mei 2011 - 10:01


#9

Fred F.

    Fred F.


  • >1k berichten
  • 4168 berichten
  • Pluimdrager

Geplaatst op 13 mei 2011 - 10:53

Eerst warmde je leidingwater op van 15 naar 25 graden en dus koelde het warme afvalwater af van 30 naar 17,5 graden en dan zou de LMTD 3,6 graden geweest zijn. Dan was dQ/dt = 17,5 kW en A = 8,8 m2 en L = 70 m.

25*dT1 = 20*dT2 en 15+dT1 = 30-dT2
25dT1 = 20*(15-dT1)
45dT1 = 300
dT1 = 6.67 oC, dus dT2 = 25/20*6,67 = 8.33 oC.
Tu = 15+6.67 = 30 - 8.33 = 21.67 oC
Dit zal dan de gemiddelde temperatuur zijn bij L = oneindig, zonder externe energieverliezen.

Er is geen enkele reden waarom de beide uitlaattemperaturen aan elkaar gelijk zouden moeten zijn. Dat zou alleen zo zijn bij gelijkstroom en oneindig groot oppervlak maar dat is onpraktisch. Maar je moet tegenstroom gebruiken en dan kan het leidingwater eventueel warmer worden dan het afgekoelde afvalwater, als je tenminste genoeg oppervlak installeert.

Nu warmt je koude leidingwater op van 15 naar 21,67 graden en koelt het warme afvalwater af van 30 naar 21,67 graden en dan is de LMTD inderdaad 7,5 graden, en dQ/dt = 11,6 kW en A = 2,8 m2 en L = 22 m.
Hydrogen economy is a Hype.

#10

devvvvy

    devvvvy


  • 0 - 25 berichten
  • 13 berichten
  • Gebruiker

Geplaatst op 13 mei 2011 - 17:44

Bedankt! Volgens mij ben ik er nu uit. Ik bereken nu de haalbare Tuit,k aan de hand van een gegeven L op de volgende manier (met voorbeeld L = 1m):

-Het middenstuk is de berekening, het gaat uiteindelijk om de laatste 3 regels!-

A = L * 2 * pi * 0,02 = 0,1255637 m2

A = φk * Cpk * (Tui,k - Tin,k) / ( U * (((Tin,w - Tuit,w) - (Tuit,k - Tin,k)) / ln((Tin,w - Tuit,w)/(Tuit,k - Tin,k)) ) )

A*U/(φk*Cpk) = (Tuit,k - Tin,k) / (((Tin,w - Tuit,w) - (Tuit,k - Tin,k)) / ln((Tin,w - Tuit,w)/(Tuit,k - Tin,k)))

met Tuit,w = 1,25*Tuit,k + 33,75 (invullen en omschrijven van (Tuit,k - Tin,k)*25 = (Tin,w - Tuit,w)*20 )

A*U/(φk*Cpk) = C = 0,0398677

Er volgt:

C = (Tuit,k - 15) / ( ( (-3,75 + 1,25*Tuit,k) - (Tuit,k - 15) ) / (ln((-3,75+1,25*Tuit,k)/(Tuit,k - 15)) )

C = (Tuit,k - 15) / ( ( (0,25*Tuit,k + 11.25) ) / (ln((-3,75+1,25*Tuit,k)/(Tuit,k - 15)) )

(0,25*C*Tuit,k + 11,25*C)/(Tuit,k - 15) = ln(-3,75+1,25*Tuit,k) - ln(Tuit,k - 15)

Hiervan kan gemaakt worden:

e^((0,25*C*Tuit,k + 11,25*C)/(Tuit,k - 15)) = 11,25 + 0,25Tuit,k
Hoe kom ik hier verder naar een vergelijking van Tuit,k = ?

#11

Fred F.

    Fred F.


  • >1k berichten
  • 4168 berichten
  • Pluimdrager

Geplaatst op 13 mei 2011 - 18:00

e^((0,25*C*Tuit,k + 11,25*C)/(Tuit,k - 15)) = 11,25 + 0,25Tuit,k
Hoe kom ik hier verder naar een vergelijking van Tuit,k = ?

Ik heb niet gecontroleerd of al je algebra klopt maar om Tuit,k hieruit op te lossen kun je waarschijnlijk de solver in Excel gebruiken.

Of anders doe je het zelf iteratief bepalen met successieve substitutie:
Je haalt Tuit,k uit het rechterdeel, dus:

Tuit,k = [ e^((0,25*C*Tuit,k + 11,25*C)/(Tuit,k - 15)) - 11,25 ] / 0,25

Je weet dat Tuit,k minstens 15 graden is dus je begint bijvoorbeeld met Tuit,k = 16 graden als eerste schatting en vult dat dan rechts in om een nieuwe waarde voor Tuit,k links te berekenen en die vul je weer in, etcetera, totdat de waarde van Tuit,k nauwelijks nog verandert. Dit kun je best doen in een spreadsheet.

Echter, soms convergeert successieve substitutie niet maar divergeert dan, maar dat lossen we later wel op mocht dat in dit geval zo zijn.
Hydrogen economy is a Hype.

#12

devvvvy

    devvvvy


  • 0 - 25 berichten
  • 13 berichten
  • Gebruiker

Geplaatst op 13 mei 2011 - 18:33

Zie bijlage van dit bestand. Ik kon geen solver vinden, maar heb het ingevoerd. In de bijlage moet Tin,k Tuit,k zijn, en de 2e kolom controle.

Maar goed, alle getallen kloppen niet dus ik zal nog eens goed naar de algebra kijken, danwel met een eerdere formule aan de gang gaan! Post volgt.

Bijgevoegde miniaturen

  • excelWTW.jpg

#13

devvvvy

    devvvvy


  • 0 - 25 berichten
  • 13 berichten
  • Gebruiker

Geplaatst op 13 mei 2011 - 18:45

Na gebruik van een eerdere formule zie ik dat het eigenlijk niet kan, de Tuit,k die uit Excel komt is altijd hoger dan de ingegeven Tuit,k (zolang Tuit,k > 15).

Veranderd door devvvvy, 13 mei 2011 - 18:54


#14

Fred F.

    Fred F.


  • >1k berichten
  • 4168 berichten
  • Pluimdrager

Geplaatst op 13 mei 2011 - 20:44

Bij een dubbele pijp van slechts 1 m zal het koude leidingwater ongeveer 0,6 graden opwarmen en het warme afvalwater ongeveer 0,8 graden afkoelen.
dQ/dT = ~1000 W.
Hydrogen economy is a Hype.

#15

devvvvy

    devvvvy


  • 0 - 25 berichten
  • 13 berichten
  • Gebruiker

Geplaatst op 13 mei 2011 - 20:58

https://spreadsheets...amp;hl=en#gid=0

Wat doe ik hierin verkeerd? Volgens mij heb ik qua berekeningen geen fouten gemaakt. Ik twijfel wel over de Tuit,k. De lengte verandert niet, dus ik heb zeker weten iets fout gedaan. Kun je eens een blik werpen naar de gebruikte formules?





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures