Springen naar inhoud

Vast punt berekening


  • Log in om te kunnen reageren

#1

christopheb

    christopheb


  • >25 berichten
  • 84 berichten
  • Ervaren gebruiker

Geplaatst op 09 juni 2011 - 10:16

Hoi,

Een van de veelgestelde vragen op het examen gaat als volgt:

Beschouw de substitutieformule x(k + 1) = exp(ax(k)) met a reëel. Voor welke waarden van a zijn er één/geen/meerdere vaste punten? Als er een vast punt is, wanneer convergeert de methode dan? Naar welk punt? Voor welke startwaarden?

Als ik deze vraag wil oplossen probeer ik steeds x = exp(ax(k)) te stellen en het verder uit te werken. Echter loop ik dan steeds hopeloos vast in de uitwerking hiervan. Is dit uberhaupt wel de juiste manier om aan deze vraag te beginnen? In het boek wordt een voorbeeld gegeven met een functie waarbij dit wel te berekenen is.

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 09 juni 2011 - 10:21

Heb je al gehoord van de contractiestelling van Banach (soms ook wel de vastepuntstelling van Banach)?

Veranderd door Drieske, 09 juni 2011 - 10:21

Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#3

christopheb

    christopheb


  • >25 berichten
  • 84 berichten
  • Ervaren gebruiker

Geplaatst op 09 juni 2011 - 10:34

Hmm, deze stelling wordt niet behandeld in het boek.

Echter wordt er wel gesproken over de Existentiestelling: Zij F(x) een continue functie die een eindig interval I op zichzelf afbeeldt, dan heeft F(x) een vast punt in I.

Maar dan weet je in feite nog niets, want hoe kan je zien op welk interval F(x) een eindig interval op zichzelf afbeeldt?

#4

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 09 juni 2011 - 11:10

En is dit de enige stelling die je hebt ivm een vast punt zoeken?
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#5

christopheb

    christopheb


  • >25 berichten
  • 84 berichten
  • Ervaren gebruiker

Geplaatst op 09 juni 2011 - 11:28

Er zijn nog meer stellingen, maar die baseren zich allemaal op het feit dat F(x) een contractie zou zijn in interval I. Bijgevolg raak ik helemaal niet aan het berekenen van de vaste punten zelf.

#6

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 09 juni 2011 - 11:33

Ja, maar die stellingen zijn volgens mij wel het nuttigst ;). Ik vroeg uiteindelijk ook achter een contractiestelling. Dus ik zou berekenen voor welke a's je een contractie hebt...
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#7

christopheb

    christopheb


  • >25 berichten
  • 84 berichten
  • Ervaren gebruiker

Geplaatst op 09 juni 2011 - 11:42

Stel dat ik het met de vastepuntsstelling van banach zou willen oplossen, dan moet ik kijken of ik een interval vind waarvoor alle x,y element in dat interval geldt dat:

d(f(x) - f(y)) <= d(x,y).

Stel dat ik dat nu wil oplossen voor bovenstaande vergelijking F(x) = exp(ax). Hoe weet ik dan in welk interval dit geldt?

#8

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 09 juni 2011 - 12:29

Hmm, door een redeneerfout leek het eerst simpel om de contractie te vinden... Maar bij nader inzien is het dat toch niet zo ;). Wel is al zeker dat a = 1 niet werkt... Maar daar stopt het voorlopig. (Oja, a=0 werkt zeker, maar is mss wat lame :P)

PS: voor a = -1 is het ook geen contractie. Schiet dus nog over wat er gebeurt tussen -1 en 1 en daarbuiten :P.

PPS: ik bedenk net iets: de contractiestelling werkt maar in één richting... Dus op zich helpt dit werk niets :P. Sorry!

Veranderd door Drieske, 09 juni 2011 - 12:41

Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#9

christopheb

    christopheb


  • >25 berichten
  • 84 berichten
  • Ervaren gebruiker

Geplaatst op 09 juni 2011 - 12:40

Ok, en hoe bereken je dat juist? Gewoon willekeurige waarden invullen, zoals die a=1 en -1? Of is er een specifieke reden dat je die waardes probeert?

#10

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 09 juni 2011 - 12:45

Ja, momenteel is het meer wat geprobeer dan met structuur... Ik zou beter wat structuur zoeken in de opgave, maar helaas zie ik die niet...

Ook bedenk ik net dat het stom is om een contractie te willen zoeken op heel R. Op een deelinterval volstaat. Dan heb je op dat deelinterval een vast punt.

En sorry voor het wat rommelig gedoe...
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#11

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 09 juni 2011 - 13:22

Ik denk dat ik er uit ben... Allereerst merken we op dat exp(.) nooit negatief wordt (in het reële vlak). Dus moeten we een snijpunt met de eerste bissectrice zeker zoeken in het positieve reële vlak (x>= 0). Daar voor alle a >= 1 exp(ax) sterker stijgt dan de eerste bissectrice, kunnen er alvast geen vaste punten zijn voor a >= 1 (want exp(0) = 1). Nu moeten we nog kijken naar a<1.

Je kunt allereerst vrij makkelijk nagaan dat voor a<0 er geldt dat:
voor alle x in [0, 1]: exp(ax) in [0, 1].
Dus op [0, 1] hebben we een vast punt. En wegens het strikt dalend zijn van de functie hebben we er ook hoogstens 1. Dus exact 1.

Nu nog wat er gebeurt voor a tussen 0 en 1... Kun je evt inspiratie halen uit mijn verhaal hier?

PS: wat hier staat, is een "overtuiging". Sommige zaken moeten uiteraard nog hard gemaakt worden...

Veranderd door Drieske, 09 juni 2011 - 13:23

Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#12

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 10 juni 2011 - 14:00

Heb je je vraag nog kunnen oplossen met deze "hints"?
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures