Springen naar inhoud

Functieonderzoek


  • Log in om te kunnen reageren

#1

Cleopatra

    Cleopatra


  • >100 berichten
  • 219 berichten
  • Ervaren gebruiker

Geplaatst op 07 oktober 2005 - 13:52

hoi, ik ben bezig met het volgende functieonderzoek.. zou iemand mij kunnen helpen bij de 2e afgeleide want daar geraak ik geen wijs uit...
Ik denk dat je een buigpunt zal hebben in het punt x=1 maar dat wil ik maar niet uitkomen :shock: ... hier zijn mijn berekeningen....

Geplaatste afbeelding


mvg,
Cleopatra

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 07 oktober 2005 - 15:03

Deze functie heeft geen buigpunten volgens mij.

#3


  • Gast

Geplaatst op 07 oktober 2005 - 15:41

Steekt da gewoon in Maple....

diff(((x-1)*(x+1)^2)^(1/3),x);
1/3*((x+1)^2+2*(x-1)*(x+1))/((x-1)*(x+1)^2)^(2/3)

#4


  • Gast

Geplaatst op 07 oktober 2005 - 15:45

1/3,{frac { left( x+1 right) ^{2}+2, left( x-1 right)  left( x



+1 right) }{ left(  left( x-1 right)  left( x+1 right) ^{2}



 right) ^{2/3}}}

#5

Cleopatra

    Cleopatra


  • >100 berichten
  • 219 berichten
  • Ervaren gebruiker

Geplaatst op 08 oktober 2005 - 10:19

Nouja, ik heb derive, en daarmee krijg je ik iet met een 8 in de teller :shock: en in de noemer zet hij dan absolute waarden :?:

ik denk dat het soms makkelijker is om het zelf te berekenen

#6

Cleopatra

    Cleopatra


  • >100 berichten
  • 219 berichten
  • Ervaren gebruiker

Geplaatst op 08 oktober 2005 - 10:23

En dan ook nog het volgende merkwaardige, als je deze functie ingeeft in Derive en dan tekent dan krijg je deze grafiek....

Geplaatste afbeelding

En als je deze in je rekentoestel zet, dan krijg je deze grafiek ?

Geplaatste afbeelding

Hierbij valt wel duidelijk te zien dat we een buigpunt in x=1 zullen hebben denk ik ...

Wie kan er mij helpen ?


Mvg,
Cleopatra

#7

Bart

    Bart


  • >5k berichten
  • 7224 berichten
  • VIP

Geplaatst op 08 oktober 2005 - 10:41

Tenzij mijn berekening fout is, is er geen buigpunt:

Geplaatste afbeelding
If I have seen further it is by standing on the shoulders of giants.-- Isaac Newton

#8

Cleopatra

    Cleopatra


  • >100 berichten
  • 219 berichten
  • Ervaren gebruiker

Geplaatst op 08 oktober 2005 - 11:24

Ah, ja, ik zie het, dit ziet er mij wel correct uit,

je hebt dus geen buigpunt in x=1 omdat deze een nulpunt is van de noemer,

Bedankt voor jullie hulp

mvg,
Cleopatra

#9

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 08 oktober 2005 - 14:09

De plot van je GRM klopt niet, die van Derive wel.
Bepaal het domein van je functie maar eens...

#10

Cleopatra

    Cleopatra


  • >100 berichten
  • 219 berichten
  • Ervaren gebruiker

Geplaatst op 09 oktober 2005 - 10:03

eeeuhm, :shock: ik dacht dat het domein R was, omdat het een derdemachtswortel is, daaronder mag je dan toch ook negatieve getallen hebben, of vergis ik mij nu zo fel ;) tis al een tijdje geleden die functieonderzoeken voor mij, maarja :?:

mvg
Cleopatra

#11

Rogier

    Rogier


  • >5k berichten
  • 5679 berichten
  • VIP

Geplaatst op 09 oktober 2005 - 11:25

eeeuhm,  :?:  ik dacht dat het domein R was, omdat het een derdemachtswortel is, daaronder mag je dan toch ook negatieve getallen hebben, of vergis ik  mij nu zo fel  ;)  tis al een tijdje geleden die functieonderzoeken voor mij, maarja  :shock:  

mvg
Cleopatra

Klopt, het domein van y is dan ook ;), dus die Derive plot lijkt me goed. Maar het domein van y'' is ;){-1,1} (van y' ook) en daarbuiten heeft y'' geen nulpunten, dus y' geen extremen, dus y geen buigpunten. y heeft wel twee extremen, een lokaal maximum op -1 en een lokaal minimum op 1/3.

(edit) oh wacht, y' heeft weliswaar geen echte extremen, maar wel een soort 'oneigenlijk maximum' in x=1, en y is daar gewoon gedefinieerd. Dus inderdaad, y heeft wl een buigpunt, in x=1.

Ik weet eigenlijk niet de exacte definitie van buigpunt, maar ik zou het logisch vinden als y' op dat punt x niet gedefinieerd hoeft te zijn, en dat het volstaat als er een epsilon.gif>0 is zodat y''(t)>0[vooralle]t[element](x-epsilon.gif,x) en y''(t)<0[vooralle]t[element](x,x+epsilon.gif) of omgekeerd. Net zoals y ook een (lokaal) minimum of maximum kan hebben in x zonder dat y' daar bestaat.

Het gaat bij buig- of extreme punten niet om punten waar y' of y'' nul is, maar waar y' of y'' van teken wisselt. En dat kan in nulpunten zijn, maar ook in punten die niet tot hun domein behoren! (mits ze wel in het domein van y liggen natuurlijk)
In theory, there's no difference between theory and practice. In practice, there is.

#12

Cleopatra

    Cleopatra


  • >100 berichten
  • 219 berichten
  • Ervaren gebruiker

Geplaatst op 09 oktober 2005 - 13:41

eeeuhm,  ;)  ik dacht dat het domein R was, omdat het een derdemachtswortel is, daaronder mag je dan toch ook negatieve getallen hebben, of vergis ik  mij nu zo fel  :?:  tis al een tijdje geleden die functieonderzoeken voor mij, maarja  ;)  

mvg
Cleopatra

Klopt, het domein van y is dan ook ;), dus die Derive plot lijkt me goed. Maar het domein van y'' is ;){-1,1} (van y' ook) en daarbuiten heeft y'' geen nulpunten, dus y' geen extremen, dus y geen buigpunten. y heeft wel twee extremen, een lokaal maximum op -1 en een lokaal minimum op 1/3.

(edit) oh wacht, y' heeft weliswaar geen echte extremen, maar wel een soort 'oneigenlijk maximum' in x=1, en y is daar gewoon gedefinieerd. Dus inderdaad, y heeft wl een buigpunt, in x=1.

Ik weet eigenlijk niet de exacte definitie van buigpunt, maar ik zou het logisch vinden als y' op dat punt x niet gedefinieerd hoeft te zijn, en dat het volstaat als er een epsilon.gif>0 is zodat y''(t)>0[vooralle]t[element](x-epsilon.gif,x) en y''(t)<0[vooralle]t[element](x,x+epsilon.gif) of omgekeerd. Net zoals y ook een (lokaal) minimum of maximum kan hebben in x zonder dat y' daar bestaat.

Het gaat bij buig- of extreme punten niet om punten waar y' of y'' nul is, maar waar y' of y'' van teken wisselt. En dat kan in nulpunten zijn, maar ook in punten die niet tot hun domein behoren! (mits ze wel in het domein van y liggen natuurlijk)


Ik heb het even opgezocht in een oude cursus, ik vat dit samen als volgt:
Je hebt een buigpunt :
=> waar de grafiek overgaat van hol naar bol ( logisch, dit zie je ook direct in je tabel )
=> je moet ook een raaklijn hebben aan de grafiek in dat punt

Uit dat tweede puntje besluit ik dan ook dat dat punt in de tweede afgeleide wel degelijk moet bestaan, want anders kan je de vgl van die raaklijn niet opstellen uiteraard...

Dus, ik denk dat het er allebei toe doet bij buig-en extreme punten, dus dat je y' of y'' nul moet zijn n dat ze van teken moeten overgaan...
Ik heb eerlijk gezegd denk ik nog nooit een oefening tegengekomen waarbij je wel een extrema of buigpunt heb in een punt die niet tot het domein van y' of y'' behoort, maar wel tot het domein van y behoort, wij hebben deze punten dan nooit meegerekend tot buig-of extrema punten ..

Dan blijf ik het toch nog steeds merkwaardig vinden dat je daar in het punt x=1 geen buigpunt vindt volgens de definitie, aangezien dit punt niet bestaat in je tweede afgeleide ( pool ), want als je de grafiek bekijkt in x=1 dan zie je toch dat deze duidelijk overgaat van hol naar bol n dat je een raaklijn kan tekenen aan de grafiek in dit punt...


Mvg,

PS, dit was ooit een oefening uit een of ander toelatingsexamen, vandaar dat deze niet zo simpel is denk ik :shock:





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures