Springen naar inhoud

Aftelbaarheid


  • Log in om te kunnen reageren

#1

barrelhouse

    barrelhouse


  • >25 berichten
  • 27 berichten
  • Gebruiker

Geplaatst op 06 januari 2012 - 15:20

Beste,

Mag ik er van uit gaan dat als een verzameling aftelbaar is bv: de natuurlijke getallen N. Dat deze verzameling dan aftelbaar is in al haar dimensies nl.

N x N
N x N x N
N x N x N x N ...

Alvast bedankt!

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 06 januari 2012 - 15:30

Wat bedoel je verder met die puntjes? Voor het cartesisch product van een eindig aantal aftelbare verzamelingen, zoals N, is dat inderdaad waar.

Voor een aftelbaar aantal gaat dit niet meer op; in tegenstelling tot bij unies (de unie van een aftelbaar aantal aftelbare verzamelingen, is weer aftelbaar).
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#3

barrelhouse

    barrelhouse


  • >25 berichten
  • 27 berichten
  • Gebruiker

Geplaatst op 06 januari 2012 - 15:32

Inderdaad over een eindig aantal. Hoe zou je dat kunnen aantonen d.m.v. een bijectie? Bij N x N , kan je gebruik maken van een matrix, moet je bij meerdere dimensies dan een tabel doorlopen?

#4

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 06 januari 2012 - 15:36

Ik geef je een idee voor het cartesisch product van 2. Beschouw de functie: LaTeX . Zie je dat dit een bijectie is? Kun je veralgemenen?
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#5

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 06 januari 2012 - 15:37

Inderdaad over een eindig aantal. Hoe zou je dat kunnen aantonen d.m.v. een bijectie? Bij N x N , kan je gebruik maken van een matrix, moet je bij meerdere dimensies dan een tabel doorlopen?

Je zou dat bewijs kunnen proberen te veralgemenen. Een andere typisch bewijs maakt gebruik van de unieke priemontbinding.
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#6

barrelhouse

    barrelhouse


  • >25 berichten
  • 27 berichten
  • Gebruiker

Geplaatst op 06 januari 2012 - 15:45

Inderdaad, bij elke dimensie kan je een nieuw priemgetal toevoegen tot een bepaalde macht, dit geeft telkens een uniek getal. Heb je hiermee dan ook bewezen dan het eindig cartesisch product van Q bestaat? Aangezien elk getal uit Q kan geschreven worden als een koppel gehele getallen. In Q x Q kan je dan een koppel van 4 getallen nemen waarvan je weet dat die verzameling aftelbaar is omdat N x N x N x N aftelbaar is?

#7

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 06 januari 2012 - 15:48

Ja, zelf meer algemeen: elk cartesisch product van een eindig aantal aftelbare verzamelingen, is aftelbaar. Elke aftelbare verzameling is immers bijectief met N, dus het volstaat om het te tonen voor Nk, zoals hierboven.
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#8

barrelhouse

    barrelhouse


  • >25 berichten
  • 27 berichten
  • Gebruiker

Geplaatst op 06 januari 2012 - 15:51

Inderdaad! Hartelijk dank voor de snelle reacties!

#9

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 06 januari 2012 - 15:51

Het is inderdaad wat TD al zegt. Wil je toch een explicietere afbeelding, dan gaat dat zo: zeg X1, ..., Xn allen aftelbaar. Definieer dan LaTeX voor alle i. Dan is LaTeX een bijectie.
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#10

Rogier

    Rogier


  • >5k berichten
  • 5679 berichten
  • VIP

Geplaatst op 06 januari 2012 - 16:16

Ik geef je een idee voor het cartesisch product van 2. Beschouw de functie: LaTeX

. Zie je dat dit een bijectie is? Kun je veralgemenen?

Kanttekening: wel injectief, maar niet surjectief, dus ook niet bijectief.. 5 behoort bijvoorbeeld niet tot het beeld van f. Maar da's hier verder niet heel belangrijk, een injectieve functie volstaat reeds om de aftelbaarheid van LaTeX aan te tonen.
In theory, there's no difference between theory and practice. In practice, there is.

#11

Rogier

    Rogier


  • >5k berichten
  • 5679 berichten
  • VIP

Geplaatst op 06 januari 2012 - 16:22

Nog een alternatieve benadering voor hogerdimensionale cartesische producten:

Als LaTeX aftelbaar is, d.w.z. je hebt een injectieve functie LaTeX , dan is LaTeX ook aftelbaar, middels de functie LaTeX . Datzelfde kun je herhaaldelijk toepassen voor hogere dimensies.
In theory, there's no difference between theory and practice. In practice, there is.

#12

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 06 januari 2012 - 16:23

Inderdaad een terechte opmerking ;)! Te rap geweest in het typen.

-edit- aanvullend ter verduidelijking voor TS: injectief volstaat omdat dit gewoon betekent dat niet alles van N bereikt wordt, maar een deelverzameling. En een deelverzameling van iets aftelbaars is zelf ook aftelbaar.
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#13

tempelier

    tempelier


  • >1k berichten
  • 1759 berichten
  • Ervaren gebruiker

Geplaatst op 08 januari 2012 - 01:11

Beste,

Mag ik er van uit gaan dat als een verzameling aftelbaar is bv: de natuurlijke getallen N. Dat deze verzameling dan aftelbaar is in al haar dimensies nl.

N x N
N x N x N
N x N x N x N ...

Alvast bedankt!


Mij lijkt het gewoon aftelbaar via de diagonaal methode van Cantor net zoals de aftelbaarheid van Q wordt bewezen.
In de wiskunde zijn er geen Koninklijke wegen Majesteit.

#14

tempelier

    tempelier


  • >1k berichten
  • 1759 berichten
  • Ervaren gebruiker

Geplaatst op 08 januari 2012 - 09:00

Mij lijkt het gewoon aftelbaar via de diagonaal methode van Cantor net zoals de aftelbaarheid van Q wordt bewezen.

Het moet het late uur geweest zijn maar bovenstaande is niet goed bedenk ik me nu.

Het geldt wel voor een eindig aantal N*N*....*N, dan kan het herhaald worden toegepast maar niet persÚ voor een oneindig aantal.
In de wiskunde zijn er geen Koninklijke wegen Majesteit.

#15

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 08 januari 2012 - 13:36

Meer nog: met een diagonaalargument Ó la Cantor kan je tonen dat het niet meer aftelbaar is, als je een aftelbaar aantal kopies van N in een cartesisch product neemt.
"Malgré moi, l'infini me tourmente." (Alfred de Musset)





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures