Springen naar inhoud

Substitueren van integraal met e macht


  • Log in om te kunnen reageren

#1

jb2410

    jb2410


  • 0 - 25 berichten
  • 5 berichten
  • Gebruiker

Geplaatst op 25 januari 2012 - 16:37

Hallo,

ik heb een tentamen integreren morgen en ik kom nog niet helemaal uit een som.
het gaat om de volgende som:

int. 48xe^(4x)dx

deze moet ik oplossen door middel van substitutie. Nu heb ik al wel et een en ander geprobeerd door op dit forum te kijken naar andere sommen maar ik kom er bij deze niet uit!

wie kan mij hiermee helpen?

alvast bedankt!!

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 25 januari 2012 - 16:39

Verplaatst naar huiswerk.

Gaat het om deze integraal?

LaTeX

Ben je zeker dat het (enkel) met substitutie moet en niet (ook) partiŽle integratie?
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#3

Jaimy11

    Jaimy11


  • >250 berichten
  • 614 berichten
  • Ervaren gebruiker

Geplaatst op 25 januari 2012 - 19:47

LaTeX



Ben je zeker dat het (enkel) met substitutie moet en niet (ook) partiŽle integratie?


Partieel lijkt mij ook een veel betere optie.

#4

jb2410

    jb2410


  • 0 - 25 berichten
  • 5 berichten
  • Gebruiker

Geplaatst op 25 januari 2012 - 20:19

in het voorbeeld staat het voorgedaan met substitutie.
hier komt uit als antwoord: 12xe^4x - 3xe^4x + C

Kunnen jullie mij laten zien hoe je deze oplost met partieele integratie.

alvast bedankt

#5

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 25 januari 2012 - 20:21

Ik vermoed zonder factor x in die laatste term? Kan je eens laten zien hoe ze dan doen, enkel met substitutie? Begrijp je de voorbeelduitwerking?
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#6

jb2410

    jb2410


  • 0 - 25 berichten
  • 5 berichten
  • Gebruiker

Geplaatst op 25 januari 2012 - 20:33

in het antwoord staat wel degelijk de x in de laatste term. Het is ook niet echt een voorbeeld maar een som waarbij alleen het eind antwoord wordt gegeven. ik heb geen duidelijke sommen die uitgewerkt zijn dus ik weet ook niet goed hoe de tussenstappen zijn.

het is dan redelijk lastig om alles op zijn plaats te krijgen. de enige tussenstap bij de substitutie die gegeven is gaat als volgt:

12xe^4x - ( int. 12xe^4x dx) waaruit het eerder gegeven antwoord komt.

#7

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 25 januari 2012 - 20:35

Dan is het eindantwoord in elk geval fout. Die tussenstap doet ook vermoeden dat er toch partiŽle integratie wordt toegepast; al heb je onderweg eigenlijk ook een 'kleine substitutie'.

Heb je de techniek van partiŽle integratie al gezien? Anders lijkt het me niet de bedoeling dat je deze opgave al moet kunnen. Zie bv. hier of hier voor uitleg en voorbeelden over deze methode.
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#8

jb2410

    jb2410


  • 0 - 25 berichten
  • 5 berichten
  • Gebruiker

Geplaatst op 25 januari 2012 - 20:41

okeej, bedankt voor het antwoord. Best lastig om een som op te lossen als je op het verkeerde antwoord zit na te kijken. Ik ga eens proberen de som op te lossen met het partieel integreren.

bedankt voor de links

#9

Jaimy11

    Jaimy11


  • >250 berichten
  • 614 berichten
  • Ervaren gebruiker

Geplaatst op 25 januari 2012 - 20:44

12xe^4x - ( int. 12xe^4x dx) waaruit het eerder gegeven antwoord komt.


Dat is dus een partiele integratie :)
En de uitwerking klopt idd niet...

LaTeX is de LaTex-code :)

#10

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 25 januari 2012 - 20:47

okeej, bedankt voor het antwoord. Best lastig om een som op te lossen als je op het verkeerde antwoord zit na te kijken. Ik ga eens proberen de som op te lossen met het partieel integreren.

bedankt voor de links

Graag gedaan.

Je kan dat beter eerst even op je gemak nalezen (er is veel over te vinden, eventueel google je nog wat) en dan kan je hier nog vragen stellen als er iets niet duidelijk is. Alleszins gaat het met alleen substitutie niet lukken, dit is een typische oefening voor partiŽle integratie (jammer dat de uitwerking niet klopt :)).
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#11

Safe

    Safe


  • >5k berichten
  • 9907 berichten
  • Pluimdrager

Geplaatst op 25 januari 2012 - 20:51

int. 48xe^(4x)dx

Heb je partieel integreren al toegepast?

Ik denk dat de bedoeling is dat je uitgaat van de primitieve (ax+b)e^(4x), weet je dan hoe je verder kan gaan?
Wat moet gelden voor de afgeleide van deze primitieve ...

#12

jb2410

    jb2410


  • 0 - 25 berichten
  • 5 berichten
  • Gebruiker

Geplaatst op 25 januari 2012 - 21:00

Heb je partieel integreren al toegepast?

Ik denk dat de bedoeling is dat je uitgaat van de primitieve (ax+b)e^(4x), weet je dan hoe je verder kan gaan?
Wat moet gelden voor de afgeleide van deze primitieve ...


Ik heb dit wel gehad, maar het is al een jaar geleden. Dus de hele stof is lichtjes weggezakt.
maar de afgeleide is dan a*4e^(4x) dacht ik

Ik heb dit wel gehad, maar het is al een jaar geleden. Dus de hele stof is lichtjes weggezakt.
maar de afgeleide is dan a*4e^(4x) dacht ik

#13

Safe

    Safe


  • >5k berichten
  • 9907 berichten
  • Pluimdrager

Geplaatst op 25 januari 2012 - 21:43

Ik heb dit wel gehad, maar het is al een jaar geleden. Dus de hele stof is lichtjes weggezakt.
maar de afgeleide is dan a*4e^(4x) dacht ik

Het bovenstaande is fout. Je hebt wel de kettingregel goed gebruikt!

Nu gaat het om differentiŽren ... , ken je de productregel?



Het is 'ons' (zoals je gemerkt hebt) niet duidelijk waarom en hoe je substitutie wil toepassen. Is dit een vermoeden of een hint in de opgave?





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures