Springen naar inhoud

Vraag i.v.m. naamkeuze 'gesloten interval'


  • Log in om te kunnen reageren

#1

Biesmansss

    Biesmansss


  • >1k berichten
  • 1201 berichten
  • Ervaren gebruiker

Geplaatst op 07 maart 2012 - 19:09

Zou iemand mij kunnen uitleggen waarom men bv. het interval [2, +oo[ een gesloten interval noemt (en niet zoals de haakjes suggereren, halfopen) ?

Dank bij voorbaat!
The ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is commonly understood. Indeed the world is ruled by little else. Quote : John Maynard Keynes

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 07 maart 2012 - 19:15

Zou iemand mij kunnen uitleggen waarom men bv. het interval [2, +oo[ een gesloten interval noemt (en niet zoals de haakjes suggereren, halfopen) ?

Men noemt dat niet gesloten. Dat is gesloten. Ken je de definitie van open en gesloten interval?
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#3

Biesmansss

    Biesmansss


  • >1k berichten
  • 1201 berichten
  • Ervaren gebruiker

Geplaatst op 07 maart 2012 - 19:24

Jazeker :)
Een interval, noem het I, noemt men open als het leeg is of als er rond elk punt x ∈ I een open interval bestaat dat helemaal in I ligt.
Wat op hetzelfde neer komt als zeggen dat er voor elk, willekeurig punt x ∈ I een M > o bestaat zodat:

]x-M, x+M[ ⊂ I

We noemen I gesloten indien R \ I open is.

Wat mij meteen op weg helpt naar de uitleg volgens mij.

In het desbetreffende geval waarbij I = [2, +oo[
is R \ I gelijk aan:

]-oo,2[

en hiervan kunnen we aantonen dat het een open interval is, of vergis ik me ?

Veranderd door Biesmansss, 07 maart 2012 - 19:24

The ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is commonly understood. Indeed the world is ruled by little else. Quote : John Maynard Keynes

#4

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 07 maart 2012 - 19:30

Je vergist je niet. Je kunt inderdaad aantonen dat dat open is. En het complement dus gesloten.
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#5

Biesmansss

    Biesmansss


  • >1k berichten
  • 1201 berichten
  • Ervaren gebruiker

Geplaatst op 07 maart 2012 - 19:31

Bedankt Drieske!

Veranderd door Biesmansss, 07 maart 2012 - 19:32

The ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is commonly understood. Indeed the world is ruled by little else. Quote : John Maynard Keynes

#6

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 07 maart 2012 - 19:33

Graag gedaan :). Zou je overigens graag nog bewijzen dat dat open is of zie je dat voldoende in? Los van de vorm van de haakjes.
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#7

Biesmansss

    Biesmansss


  • >1k berichten
  • 1201 berichten
  • Ervaren gebruiker

Geplaatst op 07 maart 2012 - 19:44

Het bewijs dat het interval ]-oo, 2[ open is, is volgens mij eenvoudig om te vinden.
Ik zal het even proberen, het is altijd leuk om te weten of het lukt (en juist is) :).

Kies een willekeurige x ∈ ]-oo, 2[, vervolgens moeten we aantonen dat we een M > o kunnen vinden zodat
]x - M, x + M[ ⊂ ]-oo, 2[.

Het is overbodig om te zeggen dat onze willekeurige 'x' min een strikt positief getal hoe dan ook kleiner zal zijn dan 2 en ook altijd binnen de perken van '-oo' zal liggen.

Onze 'M' moet dus:

0 < M ≤ 2 - x

Kies nu een willekeurige a ∈]x - M, x + M[.
Dan is:

a < x + M ≤ x + (2 - x) = 2 EN -oo < a

We weten dus dat
a ∈ ]-oo, 2[

Waardoor we het bovenstaande bewezen hebben.
The ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is commonly understood. Indeed the world is ruled by little else. Quote : John Maynard Keynes

#8

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 07 maart 2012 - 20:36

Die a kiezen is eigenlijk overbodig. Je kunt gewoon simpel beargumenteren dat x+M < 2, wat het gevraagde toont.

Vraag ivm onbegrensde verzameling afgesplitst naar dit topic.
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures