Springen naar inhoud

Fourier


  • Log in om te kunnen reageren

#1

Gymnasiast X

    Gymnasiast X


  • 0 - 25 berichten
  • 1 berichten
  • Gebruiker

Geplaatst op 07 april 2004 - 18:10

Hallo allemaal,

:shock: Ik zit in 5gymnasium en voor het vak wiskunde maak ik een praktische opdracht over differentiaalvergelijkingen. Tot nu toe heb ik voor alle vergelijkingen kloppende oplossingen gevonden, maar voor onderstaande vergelijking zou ik het niet weten. Mijn wiskundedocent zei dat het iets met de Fouriermethode te maken heeft, maar aangezien dit onderwerp boven de VWO stof staat, hoeven we het niet op te lossen. Echter, ik zou graag willen weten wat Fourier inhoudt en wat de oplossing van de differentiaalvergelijking is!

dy/dx= sinx/x

Wie kan mij helpen, ik zou dat heel leuk vinden!

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Syd

    Syd


  • >1k berichten
  • 1107 berichten
  • VIP

Geplaatst op 07 april 2004 - 18:14

Woodstock zou zeggen:

http://nl.msnusers.c...ES9ELq0CAkcttbF
yqD8TahAO3vMdwgjBqBbAbHfybpg/bart.jpg?dc=4675464653323813834


Maar goed:

http://aurora.phys.u...papers/fourier/
http://www-gap.dcs.s...ns/Fourier.html

Misschien dat je hier wat aan hebt?

#3

DePurpereWolf

    DePurpereWolf


  • >5k berichten
  • 9240 berichten
  • VIP

Geplaatst op 07 april 2004 - 20:56

Ik wil niet zeuren, want ik ben helemaal niet zo goed in Wiskunde, maar wat heeft het voor zin om de gehele fourier kennis te gaan leren om gewoon een diff vergelijking op te lossen, heeft het niet meer zin om informatie te vinden over differentiaal vergelijkingen?

#4

BugsBunny

    BugsBunny


  • 0 - 25 berichten
  • 8 berichten
  • Gebruiker

Geplaatst op 07 april 2004 - 22:54

De Fouriertransformatie heeft er mee te maken dat elk signaal te schrijven valt als een (oneindige) som van sinussen en cosinussen.

Echter, voor deze DV schrijf je de oplossing als een oneindige som van machten van x. Met de term Fourier schiet hij dus een fameuze kemel. Als complete leek zal de oplossing niet zo gemakkelijk te vinden zijn en ik zou er echt niet aan beginnen.

Indien je je niet kan bedwingen geef ik je een referentie waar je de methodes in kan vinden om zulke vgl met succes aan te pakken:
Differential Equations and Boundary Value Problems. (door Boyce en di Prima)

De oplossing is:

y = x - x^3 / (3.3!) + x^5 / (5.5!) - ...

#5

Bert

    Bert


  • >250 berichten
  • 718 berichten
  • Ervaren gebruiker

Geplaatst op 11 april 2004 - 10:05

Het heeft niets met Fourier te maken maar alles met Taylor reeksen.
De sin kun je ook schrijven als:

sin(x)=x - x^3/3! + x^5/5! - x^7/7! + x9/9! - ....

Van daaruit kun kun je het verder zelf. Een simpelere oplossing bestaat helaas niet.

Een Taylor reeks kun je van iedere functie maken:

f(x)=f(0)+x*f'(0)/1! + x^2*f''(0)/2! + x^3*f'''(0)/3!+....

mits de reeks convergeert uiteraard.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures