Springen naar inhoud

wiskunde - ontspanning


  • Log in om te kunnen reageren

#1

stoker

    stoker


  • >1k berichten
  • 2746 berichten
  • Ervaren gebruiker

Geplaatst op 06 juni 2007 - 09:17

wie zin heeft om eens een wiskundevraagje op te lossen, gebaseerd op algemene kennis. wacht met een nieuwe te posten, totdat het antwoord gekend is, of de zoektoch werd opgegeven.

Een punt in het vlak dat gehele getallen als coödinaten heeft, noemt men een roosterpunt
. Hoeveel roosterpunten liggen er op het lijnstuk met eindpunten (3; 17) en
(48; 281)? (Tel beide eindpunten van dit lijnstuk mee.)


have fun

Veranderd door Kerckhof, 06 juni 2007 - 09:19


Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

tequila boy

    tequila boy


  • >1k berichten
  • 1490 berichten
  • Ervaren gebruiker

Geplaatst op 06 juni 2007 - 09:39

Een punt in het vlak dat gehele getallen als coödinaten heeft, noemt men een roosterpunt
. Hoeveel roosterpunten liggen er op het lijnstuk met eindpunten (3; 17) en
(48; 281)? (Tel beide eindpunten van dit lijnstuk mee.)


met deze 2 punten komt er de volgende formule uit:

y=5.8667x-0.6


hiermee kom ik op 7 roosterpunten op het lijnstuk

#3

stoker

    stoker


  • >1k berichten
  • 2746 berichten
  • Ervaren gebruiker

Geplaatst op 06 juni 2007 - 10:16

ik kom iets anders uit

ten eerste zou ik niet met die kommagetallen werken, daarmee zal je gegarandeerd foute punten vinden. en ten tweede, kan je je oplossing wat beter uitwerken?

vergl:= y-17=(264/45).(x-3) met y,x element van de natuurlijke getallen en 3<=x<=48
omvormen : vergl:= 88x-9=15y met y element van natuurlijke getallen
=> 88x-9=0 mod 15 => 88x=9 mod 15 => x=3+15n met n element van N
met :3<=x<=48 => xmax=48=3+15*n => n=3 en xmin=3 =>n=0

dus de mogelijke waarden voor n zijn: 0;1;2;3 vier oplossingen dus maw 4 roosterpunten. te controleren door in te vullen in je vergelijking

de oplossing is ook wel mogelijk zonder modulorekenen, maar dat ziet er toch zo mooi uit [|:-)]

#4

stoker

    stoker


  • >1k berichten
  • 2746 berichten
  • Ervaren gebruiker

Geplaatst op 07 juni 2007 - 16:48

We beschouwen zes opeenvolgende even natuurlijke getallen. Het derde getal noemen
we x.
Waaraan is de som van de zes getallen gelijk(in functie van x)?




een goede bron van vragen vind je hier

#5

Marjanne

    Marjanne


  • >1k berichten
  • 4771 berichten
  • VIP

Geplaatst op 07 juni 2007 - 17:01

De reeks getallen kun je omschrijven als:

x-4, x-2, x, x+2, x+4, x+6.

De som hiervan is gelijk aan 6x+6, of 6(x+1).


Edit: ik nam eerst alle natuurlijke getallen (ook de oneven). Dan is de som gelijk aan 6(x + 1/2).

Veranderd door Marjanne, 07 juni 2007 - 17:06


#6

stoker

    stoker


  • >1k berichten
  • 2746 berichten
  • Ervaren gebruiker

Geplaatst op 07 juni 2007 - 17:08

ziet er goed uit!

heeft er iemand zin om een nieuwe te posten? het moet altijd ik zijn.

#7

jhullaert

    jhullaert


  • >1k berichten
  • 2337 berichten
  • Ervaren gebruiker

Geplaatst op 07 juni 2007 - 20:06

Ik zal eens iets posten. jullie gaan hem zo makkelijk vinden. :)

Wat is de horizontale asymptoot van de vergelijking y=(-x/2x+2) +2

Veranderd door chemaniac, 07 juni 2007 - 20:07


#8

stoker

    stoker


  • >1k berichten
  • 2746 berichten
  • Ervaren gebruiker

Geplaatst op 07 juni 2007 - 20:29

de limiet van de eerste term zal wel naar nul gaan, dus een horizontale assymptoot van y=2
maar ik zie niet direct hoe je die limiet kan bewijzen aantonen.
maar een exponentiele functie stijgt veel sneller dan een lineare, dus tis wel duidelijk

#9

jhullaert

    jhullaert


  • >1k berichten
  • 2337 berichten
  • Ervaren gebruiker

Geplaatst op 07 juni 2007 - 20:50

Ok het was idd belachelijk. :P

#10

woelen

    woelen


  • >1k berichten
  • 3145 berichten
  • Ervaren gebruiker

Geplaatst op 07 juni 2007 - 21:37

Nu een iets lastiger puzzeltje:

Ik heb 299 euromunten. Deze euromunten moeten verdeeld worden over verschillende zakjes, waarop het bedrag, dat in het zakje zit wordt geschreven. Nu moet het geld zodanig worden verdeeld over zakjes, dat als iemand je zou vragen om een X bedrag tussen EUR 1 en EUR 299, dat dan dat bedrag kan worden gegeven door de juiste zakjes te selecteren.

Een mogelijke oplossing is om 1 zakje van 1 euro te maken en 149 zakjes van twee euro. Ieder bedrag dat nu wordt gevraagd kan eenvoudig worden uitgeteld. Bijv. als iemand om 23 euro vraagt, dan geef je het zakje van 1 euro plus 11 zakjes met 2 euro. Deze simpele oplossing vereist 150 zakjes.

Een efficientere oplossing is om 1 zakje van 1 euro te maken, 2 zakjes van 2 euro en verder allemaal zakjes van drie euro. Ook hiermee kun je ieder gewenst bedrag van 1 t/m 299 euro simpelweg afgeven. Bijv. 23 euro kun je nu geven door 1 zakje van 2 euro en 7 zakjes van drie euro te geven. Deze iets ingewikkelder oplossing vereist 101 zakjes.

De vraag is nu om het zo efficient mogelijk te doen. Dus, zo min mogelijk zakjes gebruiken, maar toch nog steeds ieder bedrag van EUR 1 t/m EUR 299 kunnen geven, simpelweg door de juiste zakjes te geven, zonder dat er weer geld gewisseld moet worden tussen zakjes.

Wat is de meest efficiente oplossing en hoeveel zakjes heb je dan nodig?

Veranderd door woelen, 07 juni 2007 - 21:42


#11

Robin85

    Robin85


  • >250 berichten
  • 365 berichten
  • Ervaren gebruiker

Geplaatst op 07 juni 2007 - 21:42

een zakje van 1 , 2 4 8 16 32 64 128. hiermee kun je allesins het best mee betalen tot 255€. tot 299 is natuurlijk een andere vraag

Veranderd door Robin85, 07 juni 2007 - 21:42


#12

woelen

    woelen


  • >1k berichten
  • 3145 berichten
  • Ervaren gebruiker

Geplaatst op 07 juni 2007 - 21:43

Dit is inderdaad niet de oplossing. De vraag is om ieder bedrag tot 299 euro te kunnen geven.

#13

scientist 1

    scientist 1


  • >250 berichten
  • 448 berichten
  • Ervaren gebruiker

Geplaatst op 07 juni 2007 - 22:21

Een statistisch probleempje.

Het leger beschikt over noodbruggen waarvan volgens de fabrikant de draagkracht op het moment van stockage onafhankelijk normaal verdeeld is met mu= 2500 kg en sigma[sub]2[sub]= 150[sub]2[sub] kg[sub]2[sub]. De gemiddelde draagkracht kan verminderen in de loop van de tijd en na 2 jaar moet worden beslist deze noodbruggen te bewaren of niet. (De onafhankelijkheid, de normaliteit en de variatie blijven onveranderd). Hoeveel bruggen moeten worden getest opdat als de gemiddelde waarde 2500 kg is, dat ook zou besloten worden in 95% van de gevallen (dus slechts 5% risico lopen de noodbruggen niet te bewaren, als ze toch nog konden bewaard worden) en als de gemiddelde draagkracht verminderd is met 150 kg dat deze dan ook zou worden gedetecteerd in 90% van de gevallen (en dus niet meer dan 10% risico nemen de noodbruggen te bewaren als de gemiddelde draagkracht met 150 kg verminderd was)?

Veranderd door scientist 1, 07 juni 2007 - 22:22


#14

Beryllium

    Beryllium


  • >5k berichten
  • 6314 berichten
  • Minicursusauteur

Geplaatst op 08 juni 2007 - 07:09

Dit is inderdaad niet de oplossing. De vraag is om ieder bedrag tot 299 euro te kunnen geven.

De redenatie van Robin85 doet me wel denken dat je moet denken in zakjes met telkens de helft van de volgende 'duurste'.

Dan zou je uitkomen op: 149, 74, 37, 18, 9, 4, 2, 1.

Getallen 7 en 8 kan je daarmee niet maken, dus doe ik er een zakje van 3 bij.

Heb ik nog 2 euro over... dan kan het nog zijn 149, 74, 37, 18, 9, 4, 3, 2, 1, 1, 1.
Dat moet dus efficienter kunnen...

Hmm, lastig :)
You can't possibly be a scientist if you mind people thinking that you're a fool. (Douglas Adams)

#15

drune134

    drune134


  • >250 berichten
  • 873 berichten
  • Ervaren gebruiker

Geplaatst op 08 juni 2007 - 07:11

Woelen, jij zegt dat wanneer iemand vraagt om een bedrag tussen EUR 1 en EUR 299 dat met die zakjes moet kunnen gebeuren. Moet dan EUR 1 ook? En EUR 299?
Misschien flauw maar tussen 1 en 229 betekent dat die twee waarden niet mee doen.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures