Springen naar inhoud

bewijzen i.v.m. limieten van rijen



  • Log in om te kunnen reageren

#1

Biesmansss

    Biesmansss


  • >1k berichten
  • 1201 berichten
  • Ervaren gebruiker

Geplaatst op 13 april 2012 - 20:32

Beoordeel volgende uitspraken. Als ze waar zijn, bewijs je de uitspraken; zo niet, geef je een tegenvoorbeeld.

a) Als een rij begrensd is, dan is ze naar boven begrensd.

b) Als een rij naar boven begrensd is, dan is ze begrensd.

c) Als een rij naar boven en naar onder begrensd is, dan is ze begrensd.

d) Iedere begrensde rij is convergent (heeft een eindige limiet).

--------------------------------------------------------------------------------------------------------------


a) Waar. Indien een rij begrensd is, dan is ze naar boven begrensd. Maar toch ook naar onder, of niet ?

Zij Xn een rij met limiet a, dan volgt uit de definitie van een limiet van een rij dat we een n0 N kunnen vinden zodat voor alle n ≥ n0 geldt dat:

|Xn - a| < 1

Voor alle n ≥ n0 zal gelden dat:

|Xn| = |(Xn - a) + a| ≤ |Xn - a| + |a| ≤ 1 + |a|

stel nu

M = Max{|X0|, |x1|, ...|Xn0-1|, 1 + |a|}

Per constructie is nu |Xn| ≤ M

Hiermee is bewezen dat een rij met een eindige limiet naar boven is begrensd, maar nog niet dat een divergerende rij naar boven is begrensd ?



b) Niet waar. De rij Xn = -n is naar boven begrensd, maar de limiet is toch -oo.



c) Waar.

Als een rij naar boven begrensd is, bestaat er een M R+ zodat Xn < M voor alle n N. (1)

Als een rij naar beneden begrensd is, bestaat er een m R- zodat Xn < m voor alle n N. (2)

Uit (1) en (2) volgt per definitie dat de rij Xn noch naar +oo, noch naar -oo kan gaan en dat ze bijgevolg wel begrensd moet zijn.

Maar ook hier weer heb ik een probleem met "wat als de rij divergeert naar oneindig in de aard van (-2)n" ?

d) Niet waar. bv. (-1)n
The ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is commonly understood. Indeed the world is ruled by little else. Quote : John Maynard Keynes

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 13 april 2012 - 20:42

Je intuïtie ivm waar/niet waar klopt. Je verwoording kan beter. Begin eens met a). Je moet bewijzen dat als een rij begrensd is, ze ook naar boven begrensd is. Wat weet je dus? En wat moet je bewijzen?
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#3

Biesmansss

    Biesmansss


  • >1k berichten
  • 1201 berichten
  • Ervaren gebruiker

Geplaatst op 13 april 2012 - 21:01

We willen bewijzen dat wanneer een rij Xn begrensd is we altijd een M R kunnen vinden zodat Xn < M voor alle n N.

Als we weten dat een rij begrensd is, kan deze convergeren of divergeren, maar kan deze niet naar +oo / -oo gaan.
The ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is commonly understood. Indeed the world is ruled by little else. Quote : John Maynard Keynes

#4

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 13 april 2012 - 22:03

Je hebt toch wel een échte definitie voor begrensdheid van een rij?
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#5

Biesmansss

    Biesmansss


  • >1k berichten
  • 1201 berichten
  • Ervaren gebruiker

Geplaatst op 14 april 2012 - 10:23

Euhm, in de cursus ben ik die toch nog niet tegen gekomen.

Ik zou zeggen:

∃ M ∈ R+, ∀ n ∈ N: |Xn| < M
The ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is commonly understood. Indeed the world is ruled by little else. Quote : John Maynard Keynes

#6

TD

    TD


  • >5k berichten
  • 24052 berichten
  • VIP

Geplaatst op 14 april 2012 - 11:29

Dat is inderdaad een mogelijke definitie. Je hebt wel definities van 'begrensd' en van 'naar boven begrensd' nodig als je er implicaties tussen wil bewijzen, natuurlijk...
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#7

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 14 april 2012 - 16:54

Zoals TD aangeeft, is dat een mogelijkheid. Kun je zo zien dat het triviaal is eigenlijk?
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#8

Biesmansss

    Biesmansss


  • >1k berichten
  • 1201 berichten
  • Ervaren gebruiker

Geplaatst op 15 april 2012 - 10:57

Ja, ik zie dat het vrij triviaal is. Maar hiermee is het nog neit echt bewezen ofwel ?
En dan geldt het volgende toch ook:

∃ m ∈ R-, ∀ n ∈ N: -|Xn| < m

Waardoor we weten dat de rij dan ook automatisch naar onder begrensd is.

Veranderd door Biesmansss, 15 april 2012 - 10:58

The ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is commonly understood. Indeed the world is ruled by little else. Quote : John Maynard Keynes

#9

Biesmansss

    Biesmansss


  • >1k berichten
  • 1201 berichten
  • Ervaren gebruiker

Geplaatst op 15 april 2012 - 11:18

Ja, ik zie dat het vrij triviaal is. Maar hiermee is het nog neit echt bewezen ofwel ?
En dan geldt het volgende toch ook:

∃ m ∈ R-, ∀ n ∈ N: -|Xn| < m

Waardoor we weten dat de rij dan ook automatisch naar onder begrensd is.


Dit hangt volgens mij trouwens zeer sterk samen met een volgende vraag in mijn cursus (daarom dat ik het stom vind om hier een nieuwe thread voor aan te maken):

Toon aan: als een rij (Xn) n N een rij is waarvoor Lim Xn = +oo, dan is de rij (Xn) n N niet begrensd.

Hiervoor zou ik dan gewoon zegge:

Wanneer een rij begrensd is weten we dat:


∃ M R+, ∀ n N: |Xn| < M (1)

We kunnen dus een M vinden zodat |Xn| < M, door de definitie van een limiet van een rij gaan naar oneindig weten we ook dat we:


∀ M R+, ∃ n0 N, ∀ n N: n ≥ n0 => M < |Xn| (2)

Wat natuurlijk tegenstrijdig is met (1). Waardoor we weten dat als (2) klopt, (1) niet mogelijk is. En dus het bovenstaande aangetoond is ?

Veranderd door Biesmansss, 15 april 2012 - 11:18

The ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is commonly understood. Indeed the world is ruled by little else. Quote : John Maynard Keynes

#10

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 15 april 2012 - 15:33

Ja, ik zie dat het vrij triviaal is. Maar hiermee is het nog neit echt bewezen ofwel ?

Wat is voor jou een bewijs?

En voor er extra vragen bij te halen: je hebt al een a), b), c) en d) open staan. Zullen we eerst deze doen?
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#11

Biesmansss

    Biesmansss


  • >1k berichten
  • 1201 berichten
  • Ervaren gebruiker

Geplaatst op 15 april 2012 - 15:39

Wat is voor jou een bewijs?

En voor er extra vragen bij te halen: je hebt al een a), b), c) en d) open staan. Zullen we eerst deze doen?


Ja, we zullen eerst en vooral deze doen. :D

Euhm, een bewijs is voor mij (om het zo maar losjes proberen te verwoorden):

Aan de hand van mathematische zekerheden (bv. voordien bewezen definities, etc...) aantonen dat 'iets' in het algemeen (dus bv. voor alle willekeurige reële getallen) standvast klopt.

Veranderd door Biesmansss, 15 april 2012 - 15:39

The ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is commonly understood. Indeed the world is ruled by little else. Quote : John Maynard Keynes

#12

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 15 april 2012 - 15:44

Dat is ook wat je moet doen... Ik zal dit voordoen (aan jou om na te gaan of ik ergens te rap overga). We weten dat er een M bestaat zodat |Xn| < M voor alle n. Wegens de definitie van absolute waarde weten we dan ook dat Xn < M. Bijgevolg is de rij Xn begrensd.
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#13

Biesmansss

    Biesmansss


  • >1k berichten
  • 1201 berichten
  • Ervaren gebruiker

Geplaatst op 15 april 2012 - 17:38

Dat is ook wat je moet doen... Ik zal dit voordoen (aan jou om na te gaan of ik ergens te rap overga). We weten dat er een M bestaat zodat |Xn| < M voor alle n. Wegens de definitie van absolute waarde weten we dan ook dat Xn < M. Bijgevolg is de rij Xn begrensd.


Euhm, ik zou het in het geheel een beetje anders:

We weten dat de rij (Xn) n N begrensd is, dus geldt de volgende definitie:

∃ M R+, ∀ n N: |Xn| < M

We weten dus dat we een M R+ kunnen vinden zodat |Xn| < M

Wat equivalent is met:

-M < Xn < M

Bijgevolg is M (-M) een bovengrens (ondergrens), (zeker) niet noodzakelijk de kleinste; maar het toont toch aan dat de rij (Xn) n N naar boven (beneden) begrensd is. Waardoor het bovenstaande is bewezen! :D

Veranderd door Biesmansss, 15 april 2012 - 17:43

The ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is commonly understood. Indeed the world is ruled by little else. Quote : John Maynard Keynes

#14

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 15 april 2012 - 17:46

Wat is daar anders aan? Dat is wat ik zei, maar over meer regels verspreid (en met wat meer tussenwoorden) :P.
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#15

Biesmansss

    Biesmansss


  • >1k berichten
  • 1201 berichten
  • Ervaren gebruiker

Geplaatst op 15 april 2012 - 18:23

Wat is daar anders aan? Dat is wat ik zei, maar over meer regels verspreid (en met wat meer tussenwoorden) :P.


Haha, ja dat is waar Dries; maar op uw manier ga je precies over alles snel over eh, wat natuurlijk subjectief is. :D En ik vermoed da we 'C' ongeveer op dezelfde manier kunnen bewijzen ?
The ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is commonly understood. Indeed the world is ruled by little else. Quote : John Maynard Keynes






Also tagged with one or more of these keywords: wiskunde

0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures