Springen naar inhoud

PartiŽle afgeleiden van k: R≥ -> R: (x, y, z) |-> (y + 3z). g(yz, sin(x + y), e^x, z)



  • Log in om te kunnen reageren

#1

Biesmansss

    Biesmansss


  • >1k berichten
  • 1201 berichten
  • Ervaren gebruiker

Geplaatst op 14 mei 2012 - 19:00

We veronderstellen dus dat aan de algemene voorwaarden voldaan zijn (al weet ik niet zeker wat deze in dit geval allemaal zijn). Er is gevraagd om de partiële afgeleiden te bereken van:

k: R3 -> R: (x, y, z) |-> k(x, y, z) = (y + 3z). g(y.z, sin(x + y), ex, z)

Hoe moet ik dit aanpakken ?
Ik dacht persoonlijk om eerst en vooral al eens te beginnen met het als de afleide van een product te zien:

k': R3 -> R: (x, y, z) |-> k(x, y, z)

= (y + 3z)'.g(y.z, sin(x + y), ex, z) + (y + 3z).g'(y.z, sin(x + y), ex, z)

Dan hebben we uiteindelijk nog 'twee delen' over die we moeten afleiden nl.:

(y + 3z)' en g'(y.z, sin(x + y), ex, z)

-----------------------------------------------------------------------------------------------------------------------------

(y + 3z)' = D1f (y + 3z) + D2f(y + 3z) = 1 + 3 = 4

-----------------------------------------------------------------------------------------------------------------------------

g'(y.z, sin(x + y), ex, z):

D1k = D1g(y.z, sin(x + y), ex, z).cos(x + y) + D2g(y.z, sin(x + y), ex, z).ex

D2k = D1g(y.z, sin(x + y), ex, z).z + D2g(y.z, sin(x + y), ex, z).cos(x + y)

D3k = D1g(y.z, sin(x + y), ex, z).y + D2g(y.z, sin(x + y), ex, z)

-----------------------------------------------------------------------------------------------------------------------------

Klopt het dusver ?
Gelieve bij het antwoorden wel dezelfde methode aan te houden, kwestie dat ik (op deze moment) enkel gewoon ben met deze methode te werken.

Dank bij voorbaat!
The ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is commonly understood. Indeed the world is ruled by little else. Quote : John Maynard Keynes

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Kravitz

    Kravitz


  • >1k berichten
  • 4042 berichten
  • Moderator

Geplaatst op 15 mei 2012 - 18:00

Iemand die hier een handje kan toesteken?
"Success is the ability to go from one failure to another with no loss of enthusiasm" - Winston Churchill

#3

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 15 mei 2012 - 20:40

Wat weet je van de functie (?) g en wat mag je gebruiken? Je moet niets bewijzen maar gewoon berekenen, lijkt me?
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#4

Biesmansss

    Biesmansss


  • >1k berichten
  • 1201 berichten
  • Ervaren gebruiker

Geplaatst op 16 mei 2012 - 08:04

Ja, je moet hier inderdaad enkel berekenen.
Wel ik denk nu dat je elke partiële afgeleide hier (D1K,...) nog mag vermenigvuldigen met '(y + 3z)'.
The ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is commonly understood. Indeed the world is ruled by little else. Quote : John Maynard Keynes






Also tagged with one or more of these keywords: wiskunde

0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures