Springen naar inhoud

Massacentrum trapezium



  • Log in om te kunnen reageren

#1

stinne 3

    stinne 3


  • >250 berichten
  • 291 berichten
  • Ervaren gebruiker

Geplaatst op 26 augustus 2012 - 14:45

Gevraagd is de hoek A, de plaat is uniform.
trapezium.JPG
Ik heb hiervoor volgende vergelijking opgesteld:

opp rechthoek*coördinaat rechthoek+opp driehoek*coördinaat rechthoek= opp geheel*coördinaat geheel

dus 1m*(0.6m+x)*0.5+1m*y/2*2/3=(1m*(x+0.6m)+1m*y/2)*0.6
of y=3x+1.8

Maar deze blijkt fout te zijn, want de oplossing voor de hoek is 37.78° waaruit volgt dat y=1.3m en x negatief is wat dus niet kan..

Waar zit mijn fout?

Veranderd door stinne 3, 26 augustus 2012 - 15:00


Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Jan van de Velde

    Jan van de Velde


  • >5k berichten
  • 44877 berichten
  • Moderator

Geplaatst op 26 augustus 2012 - 16:40

eerste keer dat ik zo'n probleem zie, en ik weet dan ook niet of ik je de goeie kant op ga sturen.

Je hebt volgens mij al twee onbekenden om op te lossen, nl die x en die y. Hoe je dat met één vergelijking wil klaarspelen vraag ik me af, en ik volg dan ook niks van je aanpak.

Beetje knullige naamgeving, omdat je coordinaten meestal in x en y uitdrukt. Om verwarring te voorkomen noem ik die lengtematen dan ook even a en b.

opp rechthoek*coördinaat rechthoek+opp driehoek*coördinaat rechthoek= opp geheel*coördinaat geheel


Deze lijkt me geldig, snel even "getest" met twee ongelijke rechthoekjes. Maar die geldt volgens mij voor élke coördinaatrichting apart.

opp rechthoek: 1*a
x- coördinaat massacentrum rechthoek : 0,5*a (let op, afwijkend x/y assenstelsel ernaast :? )
opp driehoek: 0,5*1*b
x- coördinaat massacentrum driehoek : a+b/3
opp geheel : 1*a + 0,5*1*b
x- coördinaat massacentrum geheel: 0,6
dat geeft één vergelijking met twee onbekenden

dan nog zoiets doen voor de y-coördinaat, en dan zien of je je stelsel van twee vergelijkingen met twee onbekenden krijgt opgelost.

(ik hoop dat dit zinnig is, maar de weg lijkt me wel logisch)
ALS WIJ JE GEHOLPEN HEBBEN....
help ons dan eiwitten vouwen, en help mee ziekten als kanker en zo te bestrijden in de vrije tijd van je chip...
http://www.wetenscha...showtopic=59270

#3

Xenion

    Xenion


  • >1k berichten
  • 2606 berichten
  • Moderator

Geplaatst op 26 augustus 2012 - 17:05

Ik kom ook uit op ongeveer 37° en y=1.3, maar mijn x is wel positief. Ik volg dezelfde redenering als jij. Het is mij ook wel een raadsel hoe je die hoek hebt gevonden met enkel die ene vergelijking...

Ik zie niet goed welke fouten je precies maakt, maar ik zie wel al veel te vaak "0.6" staan. In het linker lid van je vergelijking zou dat al niet mogen voorkomen. Het zwaartepunt van die rechthoek ligt gewoon op (0.5, x/2) en dat van de driehoek op (0+1+1, x+x+(x+y))/3

(Ik neem trouwens de x coordinaat naar rechts en de y coordinaat naar onder. Dat ziet er veel logischer uit.)

#4

stinne 3

    stinne 3


  • >250 berichten
  • 291 berichten
  • Ervaren gebruiker

Geplaatst op 26 augustus 2012 - 17:08

Mijn uitleg slaat idd op niks aangezien ik de verkeerde x aangeduid heb op de figuur + mijn assenstelsel omgedraaid heb.

Maar als we de figuur behouden die ik upgeload heb volg ik de berekeningen van Jan. Alleen is deze niet juist, want als ik 1.3m invul voor b (wat de juiste oplossing is voor b volgens mijn boek) en vervolgens a haal uit de vierkantsvgl bekom ik a=0.428 wat dus niet kan aangezien a>0.6.

#5

Xenion

    Xenion


  • >1k berichten
  • 2606 berichten
  • Moderator

Geplaatst op 26 augustus 2012 - 17:14

Maar als we de figuur behouden die ik upgeload heb volg ik de berekeningen van Jan. Alleen is deze niet juist, want als ik 1.3m invul voor b (wat de juiste oplossing is voor b volgens mijn boek) en vervolgens a haal uit de vierkantsvgl bekom ik a=0.418 wat dus niet kan aangezien a>0.6.


Ik kom ook op x = 0.43 (ongeveer). De tekening is dan ook duidelijk niet representatief voor de 'echte 'afmetingen. Je boek zegt ook dat y = 1.3 terwijl y toch duidelijk kleiner is dan die zijde van 1m op de tekening.

In 'werkelijkheid' is de driehoek dus groter dan de rechthoek en ligt het zwaartepunt van het geheel dus ook in de driehoek ipv wat er op de tekening getoond wordt.

#6

stinne 3

    stinne 3


  • >250 berichten
  • 291 berichten
  • Ervaren gebruiker

Geplaatst op 26 augustus 2012 - 17:18

Ok bedankt, daar zal ik dan maar van uit gaan.

#7

aadkr

    aadkr


  • >5k berichten
  • 5441 berichten
  • Pluimdrager

Geplaatst op 26 augustus 2012 - 20:09

x=1/3 en y=1 voldoen.
Ga dat zelf na

#8

Xenion

    Xenion


  • >1k berichten
  • 2606 berichten
  • Moderator

Geplaatst op 26 augustus 2012 - 20:21

x=1/3 en y=1 voldoen.
Ga dat zelf na

Niet volgens mijn berekening, bewijs dat eens...

Verborgen inhoud
Volgende vergelijking zou moeten gelden: LaTeX
of ik ben zelf ergens fout, maar de oplossingen die TS zou moeten uitkomen volgens het handboek voldoen hier wel aan.

#9

aadkr

    aadkr


  • >5k berichten
  • 5441 berichten
  • Pluimdrager

Geplaatst op 26 augustus 2012 - 20:35

Ik neem als vertikale rotatieas de as die samenvalt met de rechterzijde van de figuur
De oppervlakte van de rechthoek en de driehoek zie ik als vectoren die loodrecht het papier uitwijzen en natuurlijk aangrijpen in het zwaartepunt van de rechthoek en de driehoek
Nu mogen we de momentenstelling toepassen t.o.v. die vertikale rotatieas
LaTeX
Hieruit volgt
LaTeX
Ben je dit met me eens?

#10

Xenion

    Xenion


  • >1k berichten
  • 2606 berichten
  • Moderator

Geplaatst op 26 augustus 2012 - 20:43

Je uitleg klinkt logisch. Ik gebruik die stof zelf niet meer, dus veel stellingen ben ik vergeten.

De oplossing die ik zelf vind volgt het verband dat jij vindt (x=y/3). Ik denk echter dat je vergeet de beperking op te leggen dat het massamiddelpunt zich MOET bevinden in (0.6 , 0.6). Je hebt immers maar 1 vergelijking voor 2 onbekenden, daar mag je niet zomaar een willekeurige oplossing uit kiezen.

#11

aadkr

    aadkr


  • >5k berichten
  • 5441 berichten
  • Pluimdrager

Geplaatst op 26 augustus 2012 - 20:55

Nu neem ik als rotatieas een horizontale as die samenvalt met de bovenzijde van die rechthoek
De oppervlakte van de rechthoek en de driehoek neem ik weer aan als vectoren die loodrecht staan op het vlak van tekening en het papier uitwijzen
De momentenstelling geeft dan
LaTeX
Nu de x vervangen door 1/3 .y
Dan krijg uiteindelijk
LaTeX
y=0 kan geen goede oplossing zijn
y=1 blijkt wel te kloppen

#12

Xenion

    Xenion


  • >1k berichten
  • 2606 berichten
  • Moderator

Geplaatst op 26 augustus 2012 - 21:07

De uitwerking die ik volg, gebruikt enkel de definitie van het massamiddelpunt en jouw oplossing voldoet daar niet aan. Reken het zelf eventueel ook eens na als je me niet gelooft.

Jij probeer het iets exotischer aan te pakken, maar volgens mij haal je ergens dingen door elkaar. Moet je de momentenstelling niet gebruiken ten opzichte van een punt in plaats van een as? Als je er rotatie-assen bij betrekt gaan mijn gedachten eerder naar het traagheidsmoment...

#13

aadkr

    aadkr


  • >5k berichten
  • 5441 berichten
  • Pluimdrager

Geplaatst op 26 augustus 2012 - 21:16

Ik heb gebruik gemaakt van zogenaamde statische momenten.
Ik zal jou berekening nog eens goed bestuderen.
Aad

#14

Xenion

    Xenion


  • >1k berichten
  • 2606 berichten
  • Moderator

Geplaatst op 26 augustus 2012 - 21:25

Ik heb gebruik gemaakt van zogenaamde statische momenten.

Volgens mij is dat het probleem. De eenheid daarvan is m³ en de momentenstelling geldt voor krachtmomenten (in Nm).

Misschien kan je jouw aanpak wel gebruiken als je werk met die eerste eigenschap die op de Nederlandse wikipedia staat, maar dat lijkt mij veel meer rekenwerk te zijn dan gewoon via de definitie van het massamiddelpunt ;)

#15

aadkr

    aadkr


  • >5k berichten
  • 5441 berichten
  • Pluimdrager

Geplaatst op 26 augustus 2012 - 21:42

De momentenstelling geldt niet alleen voor krachtmomenten maar ook voor statische momenten






Also tagged with one or more of these keywords: natuurkunde

0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures