Springen naar inhoud

Spelkaarten - combinatoriek



  • Log in om te kunnen reageren

#1

Soldexio

    Soldexio


  • 0 - 25 berichten
  • 6 berichten
  • Gebruiker

Geplaatst op 13 september 2012 - 10:20

Beschouw een stok van 52 speelkaarten; bestaande uit de kleuren, klaveren, ruiten,
harten en schoppen. Van elke kleur zijn 13 kaarten,
met de waarden 2, 3, ... , 10, boer, vrouw, heer en aas.

(a) Op hoeveel manieren zijn de kaarten te verdelen over vier (verschillende) personen, zo dat elke persoon 13 kaarten krijgt?

(b) Op hoeveel manieren kunnen vijf kaarten worden geselecteerd die samen ”two
pairs” vormen; d.w.z. twee verschillende paren en een vijfde kaart die een andere
waarde heeft dan de twee paren, bijv. twee achten, twee boeren en een 3.

Bij de onderdelen © en (d) wordt geen onderscheid gemaakt tussen de kleur van
de kaarten (schoppen, harten, ruiten, klaveren). Bijv: de vier boeren worden nu
beschouwd als vier identieke kaarten.

© Op hoeveel manieren kunnen vier kaarten worden geselecteerd?

(d) Op hoeveel manieren kunnen zeven kaarten worden geselecteerd?

Wij hebben deze vraag voorgekregen als directe tentamenvergelijking en ik kom er niet zo goed uit. En de antwoorden zijn niet beschikbaar dus ik kan me niet controleren bij A en B, en ook niet kijken wat de juiste manier is voor C en D.

Bij A) had ik op dit moment: (52/13) x (39/13) x (26/13) x (13/13) (dit is een combinatie geen breuk)
Bij B) had ik op dit moment: 52x3 x 48x3 x 44 (eerst 1 kaart kiezen vervolgens een pair matchen 3 mogelijkheden, dan weer 1 kaart kiezen (vorige pair eruit gehaald) dus 48x3 en ten slotte 1 kaart kiezen uit de overgebleven 44 kaarten.

Zouden jullie dit alsjeblieft even kunnen controleren en even willen helpen hoe je C en D doet?

Groetjes!

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

EvilBro

    EvilBro


  • >5k berichten
  • 6703 berichten
  • VIP

Geplaatst op 13 september 2012 - 14:08

a) Op hoeveel manieren zijn de kaarten te verdelen over vier (verschillende) personen, zo dat elke persoon 13 kaarten krijgt? ...
Bij A) had ik op dit moment: (52/13) x (39/13) x (26/13) x (13/13) (dit is een combinatie geen breuk)


Deze is goed.

(b) Op hoeveel manieren kunnen vijf kaarten worden geselecteerd die samen ”two
pairs” vormen; d.w.z. twee verschillende paren en een vijfde kaart die een andere
waarde heeft dan de twee paren, bijv. twee achten, twee boeren en een 3. ...
Bij B) had ik op dit moment: 52x3 x 48x3 x 44 (eerst 1 kaart kiezen vervolgens een pair matchen 3 mogelijkheden, dan weer 1 kaart kiezen (vorige pair eruit gehaald) dus 48x3 en ten slotte 1 kaart kiezen uit de overgebleven 44 kaarten.

Deze is niet goed. Bekijk het eens alsvolgt: In Two Pair zitten drie verschillende waardes kaarten. Op hoeveel manieren kan je 3 waarden selecteren uit 13 waarden? Van die 3 waarden zitten er 2 in pairs. Op hoeveel manieren kan je uit 3 waarden twee waarden selecteren. Elk pair bestaat uit twee gekozen kaarten uit 4 kaarten met dezelfde waarde. Op hoeveel manieren kan dat. De losse kaart is 1 kaart uit 4 kaarten. Op hoeveel manieren kan dat?

© Op hoeveel manieren kunnen vier kaarten worden geselecteerd?

(d) Op hoeveel manieren kunnen zeven kaarten worden geselecteerd?


Wordt er hier niet gewoon naar het aantal permutaties gevraagd?

#3

Soldexio

    Soldexio


  • 0 - 25 berichten
  • 6 berichten
  • Gebruiker

Geplaatst op 13 september 2012 - 14:15

Ik weet het niet zeker bij C en D, daarom vraag ik deze,

En bij B snap ik niet helemaal wat je bedoelt, want je neemt toch eerst een willekeurige kaart, en daarmee match je een pair, hetzelfde voor het 2e paar en de laatste kaart of zie ik dit niet goed?

#4

EvilBro

    EvilBro


  • >5k berichten
  • 6703 berichten
  • VIP

Geplaatst op 13 september 2012 - 14:35

En bij B snap ik niet helemaal wat je bedoelt, want je neemt toch eerst een willekeurige kaart, en daarmee match je een pair, hetzelfde voor het 2e paar en de laatste kaart of zie ik dit niet goed?

Dat is een manier om het te zien, maar dan moet je nog wel extra dingen bekijken. Je telt op deze manier namelijk dingen dubbel (eerst een paar azen en dan een paar koningen is nu anders dan eerst een paar koningen en dan een paar azen, terwijl ze hetzelfde zouden moeten zijn).

Bekijk eens het aantal manieren om een paar te maken. Je hebt 52 mogelijkheden om de eerste kaart te trekken en dan 3 om de tweede kaart te trekken. MAAR! eerst de harten kaart en dan de schoppen is hetzelfde paar als eerst de schoppen en dan de harten. Je moet dus delen door 2. Het aantal manieren om een paar te maken is dus 52*3/2 = 78.
Je zou dit ook kunnen zien als: kies een waarde uit de 13 mogelijke waarden en kies dan uit de bijbehorende 4 kaarten er 2:
LaTeX

#5

Soldexio

    Soldexio


  • 0 - 25 berichten
  • 6 berichten
  • Gebruiker

Geplaatst op 13 september 2012 - 15:09

Dat lijkt me inderdaad een betere oplossing, bedankt alvast voor die!

Echter voor C en D, zou het misschien kunnen zijn bij C: 13^4
en bij D: dat je situaties gaat beschrijven, 4 kaarten van 1 soort, dan 3 kaarten van 1 soort en dan zo verder gaan?

#6

Soldexio

    Soldexio


  • 0 - 25 berichten
  • 6 berichten
  • Gebruiker

Geplaatst op 13 september 2012 - 15:51

Bij C heb ik besloten dat:
LaTeX
Goed kan zijn, en dan het ballenbak model gebruiken: dus 13 + 4 bakken - 1 boven 4 keuzes

Veranderd door Drieske, 13 september 2012 - 17:09
LaTeX hersteld


#7

Soldexio

    Soldexio


  • 0 - 25 berichten
  • 6 berichten
  • Gebruiker

Geplaatst op 13 september 2012 - 20:12

Het enige waar ik momenteel niet uitkom is vraag D, als er iemand is die een goede oplossing heeft, laat het alsjeblieft weten!

#8

EvilBro

    EvilBro


  • >5k berichten
  • 6703 berichten
  • VIP

Geplaatst op 14 september 2012 - 07:05

Vraag C en D zijn, afgezien van het aantal kaarten, gelijk. De methode die je gebruikt bij C zul je uiteindelijk ook moeten gebruiken bij D. Ik denk dat er simpelweg gevraagd wordt op hoeveel manieren je 4 kaarten kunt trekken, waarbij de volgorde belangrijk is, uit 52 kaarten.

#9

at1

    at1


  • 0 - 25 berichten
  • 1 berichten
  • Gebruiker

Geplaatst op 14 september 2012 - 10:16

Ik neem aan dat je dit voor DiWi moet doen :)

Ik hoop dat ik nog op tijd ben maar ik had de volgende antwoorden:

(A) 52! / ( 13! * 13! * 13! * 13! )
(B) ( 52 * 3 * 48 * 3 * 44 ) / 5!
© ( 16 boven 4 )
(D) ( 19 boven 7 ) - 13 - 13 * 12 - 13 * 12 * 12

Veel succes...

#10

EvilBro

    EvilBro


  • >5k berichten
  • 6703 berichten
  • VIP

Geplaatst op 14 september 2012 - 11:06

(B) ( 52 * 3 * 48 * 3 * 44 ) / 5!

Geen van de getallen in de teller is deelbaar door 5. De noemer bevat een factor 5. Dit is dus geen geheel getal. Het aantal manieren moet een geheel getal zijn. Dit kan dus niet goed zijn.






Also tagged with one or more of these keywords: wiskunde

0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures