Springen naar inhoud

I van het hoekprofiel


  • Log in om te kunnen reageren

#1

brue

    brue


  • 0 - 25 berichten
  • 10 berichten
  • Gebruiker

Geplaatst op 05 oktober 2012 - 00:32

Ik wil graag het oppervlaktetraagheidsmoment bepalen van een hoekprofiel. Ik wil dit graag even verduidelijken aan de hand van de volgende afbeelding
driehoek.jpg

Hierin is het gele cirkeltje het zwaartepunt(z) van het hoekprofiel en de blauwe lijn de as waarover ik het wil bepalen. De 2 kleine rode driehoeken zijn gelijkvormig.

Gegeven is de I van een driehoek: Ix=(1/12)*bh3 met de x-as gelegen op bc, b gelegen op bc en h de hoogte is van de driehoek. Ook de stelling van Steiner is gegeven.

Ik wilde dit gaan doen aan de hand van het volgende stappenplan:

-I van de totale driehoek bepalen(ABC)
-I van de kleine en grote rode driehoeken bepalen.
-Deze I's van de rode figuren van de totale driehoek afhalen.

Om dit te doen moeten eerst de zwaartepunten van de 4 driehoeken worden bepaald(zwaartepunt hoekprofiel is gegeven). Als je de bovenste hoek van de driehoeken projecteert op bc ligt het zwaartepunt van deze 4 driehoeken allen op 1/3 van de y-coördinaat van de bovenste hoek(e, g, h, a). (geprojecteerde punt van e=e', g=g' etc)

-I van de totale driehoek:
I1=(1/12)*bc*aa'3 - (1/3aa')2*(0.5bc*aa') + z2*(0.5bc*aa')
I2=(1/12)*bd*ee'3 - (1/3ee')2*(0.5bd*ee') + z2*(0.5bd*ee')
I3=(1/12)*df*hh'3 - (1/3hh')2*(0.5df*hh') + z2*(0.5df*hh')
Ihoekprofiel=I1-2I2-I3


Als ik dit zo uitreken kom ik echter niet op de juiste I uit, maar eentje een x maal groter. Weet iemand hoe dit komt,

Bij voorbaat dank,
Ray

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

kingtim

    kingtim


  • >25 berichten
  • 68 berichten
  • Ervaren gebruiker

Geplaatst op 05 oktober 2012 - 09:09

Klopt de 2e maal dat jij de stelling van steiner toepast wel? (dus + z2*(0.5bc*aa') e.d.). z hoort toch de afstand van het huidige zwaartepunt (1/3aa') tot het nieuwe zwaartepunt (z) te zijn. Dus volgens mij hoort geen z2 te staan maar (z-1/3aa')2 .

(en hetzelfde voor I2 en I3 )


Verder kan ik er overigens ook geen rare gedachtekronkels/fouten in vinden.

#3

brue

    brue


  • 0 - 25 berichten
  • 10 berichten
  • Gebruiker

Geplaatst op 05 oktober 2012 - 17:57

U, kingtim, bent werkelijke en koning.

Hartelijk bedankt :)





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures