Springen naar inhoud

minimum en maximum



  • Log in om te kunnen reageren

#1

Daaf

    Daaf


  • >25 berichten
  • 48 berichten
  • Gebruiker

Geplaatst op 18 oktober 2012 - 18:26

Hallo iedereen, dit lukt niet:

Een boer wil een rechthoekig stuk land omheinen en met draad verdelen in 5 evengrote, rechthoekige weides (dus tussen die weides moet ook draad komen). Hij heeft hiervoor 720 meter draad.
Bij welke afmetingen krijgt hij de grootst mogelijke oppervlakte?


Nu denk ik dat voor de omheining van het geheel zou gelden:


720/2= x + y
y= (360 - x)
maximaliseren, y vervangen door (360 - x)
x.(360 - x)
360x - x2 (kwadraat, ik weet niet hoe ik dat boven de x moet krijgen)

-x2 + 360x + 0



f(x)= -x2 + 360x + 0

-360/-2 = 180

f(180) = -(180)2(kwadraat) + 360.180 + 0



top= (180, 32400)

x= 180

y=360 - 180= 180



Als ik 360 verdeel in lengte 180 en breedte 180 dan is de oppervlakte maximaal nl. 32400m2(kwadraat)



Hoe het met die 5 evengrote weides moet snap ik niet goed.



Dank en groeten, David

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Westy

    Westy


  • >250 berichten
  • 578 berichten
  • Ervaren gebruiker

Geplaatst op 18 oktober 2012 - 18:32

Een boer wil een rechthoekig stuk land omheinen en met draad verdelen in 5 evengrote, rechthoekige weides (dus tussen die weides moet ook draad komen). Hij heeft hiervoor 720 meter draad.

Nu denk ik dat voor de omheining van het geheel zou gelden:
720/2= x + y

Ik begrijp uit de opgave dat de 720m draad moet dienen voor de omheining én de afscheidingsdraad tussen de 5 stukken land. Dat wil zeggen dat jouw formule hierboven fout is. Maak eens een tekening, duid x en y aan, en probeer eens een formule te vinden die de totale lengte van de draad berekent?

Veranderd door Westy, 18 oktober 2012 - 18:33

---WAF!---

#3

Daaf

    Daaf


  • >25 berichten
  • 48 berichten
  • Gebruiker

Geplaatst op 18 oktober 2012 - 18:47

Ik begrijp uit de opgave dat de 720m draad moet dienen voor de omheining én de afscheidingsdraad tussen de 5 stukken land. Dat wil zeggen dat jouw formule hierboven fout is. Maak eens een tekening, duid x en y aan, en probeer eens een formule te vinden die de totale lengte van de draad berekent?


Ja juist, die 720m draad dienen voor de omheinig én de afscheidingsdraad. Mijn formule is idd fout want die dient enkel voor de 720m als omheining. Ik maakte al een tekening maar ik weet niet hoe ik die 4 afscheidingsdraden (dus 6 maal 1 zijde) erin moet krijgen.

Alvast bedankt!

#4

Westy

    Westy


  • >250 berichten
  • 578 berichten
  • Ervaren gebruiker

Geplaatst op 18 oktober 2012 - 20:19

Stap1:
Je hebt dus een rechthoek met een lengte l en een breedte b (of x en y zoals je wil), de omtrek van die rechthoek -dat wist je- is dus: 2(l+b)
de rechthoek is onderverdeeld in 5 kleine rechthoekjes, een beetje zoals dit, maar dan mooi recht:
untitled.JPG
De tussenschotten (zo zal ik die lijnen maar noemen): hoeveel zijn er? Welke lengte hebben ze? Wat is dus de totale lengte van de tussenschotten?
Om nu de totale lengte van de draad te berekenen, moet je dus de omtrek en de lengtes van alle tussenschotten bijentellen. Die totale lengte is dus gelijk aan...?
Dat geeft een gelijkheid waar in het linkerlid zowel l als b in staan, en in het rechterlid een getal. En zoals je hierboven al gedaan had, haal je daar l uit in functie van b, of omgekeerd.
Lukt dat tot hier?

Veranderd door Westy, 18 oktober 2012 - 20:20

---WAF!---

#5

Daaf

    Daaf


  • >25 berichten
  • 48 berichten
  • Gebruiker

Geplaatst op 18 oktober 2012 - 20:28

Ok, ik denk:

2(l + b)= 2l + 2b= de lengte van de grote omheining maar nu moeten die 5 percelen dus nog eens 4.b van die 720 meter draad afgehaald en ik weet niet hoe dat in de formule moet ingebracht.

Ok, ik denk:

2(l + b)= 2l + 2b= de lengte van de grote omheining maar nu moeten die 5 percelen dus nog eens 4.b van die 720 meter draad afgehaald en ik weet niet hoe dat in de formule moet ingebracht.


De totale lengte = 2l + 6b

#6

*_gast_eezacque_*

  • Gast

Geplaatst op 18 oktober 2012 - 21:13

Er zijn meerdere mogelijkheden om een rechthoek in vijf gelijke delen te verdelen, het lijkt me ondoenlijk alle gevallen uitputtend op te sommen en na te gaan?

#7

Westy

    Westy


  • >250 berichten
  • 578 berichten
  • Ervaren gebruiker

Geplaatst op 18 oktober 2012 - 22:24

Ok, ik denk:
De totale lengte = 2l + 6b

@ Daaf: Ok: En hoeveel was die totale lengte? (Lees de opgave na) Vul in. 2l+6b=...
We hebben hier nog wel 2 onbekenden, druk nu 1 onbekende (je mag kiezen dewelke: l of b) in functie van de andere onbekende, net zoals je in je eerste post deed (maar dan met de foute formule)

Er zijn meerdere mogelijkheden om een rechthoek in vijf gelijke delen te verdelen, het lijkt me ondoenlijk alle gevallen uitputtend op te sommen en na te gaan?

@ eezacque: Zijn er dan zoveel manieren om een rechthoek te verdelen in 5 gelijke rechthoeken, want dat staat toch in de opgave?

Veranderd door Westy, 18 oktober 2012 - 22:27

---WAF!---

#8

*_gast_eezacque_*

  • Gast

Geplaatst op 18 oktober 2012 - 22:39

Afhankelijk van de verhoudingen kun je een rechthoek in het midden leggen, en de andere rechthoeken eromheen, of een aantal in de lengte en een aantal in de breedte...

#9

Westy

    Westy


  • >250 berichten
  • 578 berichten
  • Ervaren gebruiker

Geplaatst op 18 oktober 2012 - 22:56

Afhankelijk van de verhoudingen kun je een rechthoek in het midden leggen, en de andere rechthoeken eromheen, of een aantal in de lengte en een aantal in de breedte...

De opgave heeft het over 5 identieke rechthoeken. Ik heb zo de indruk dat de verdelingen die jij voorstelt niet altijd mogelijk zijn, maar alleen bij een weide met specifieke afmetingen. (de lengte van de kleine rechthoekjes moet 2,3 of 4 x de breedte zijn van diezelfde rechthoekjes, of iets dergelijks...) Klopt dat? De verdeling die ik tekende kan altijd, ongeacht de afmetingen van de weide.. Het is hier volgens mij de bedoeling van de vraagsteller dat de boer de weide verdeelt op de wijze zoals ik ze tekende. Ik denk dat we anders de TS in de war brengen...
---WAF!---

#10

*_gast_eezacque_*

  • Gast

Geplaatst op 18 oktober 2012 - 23:02

De mogelijkheden zijn inderdaad afhankelijk van de verhoudingen. Mijn kristallen bol is stuk, dus ik kan zo niet ruiken welke interpretatie van de opgave de juiste is...

#11

Westy

    Westy


  • >250 berichten
  • 578 berichten
  • Ervaren gebruiker

Geplaatst op 18 oktober 2012 - 23:05

De mogelijkheden zijn inderdaad afhankelijk van de verhoudingen. Mijn kristallen bol is stuk, dus ik kan zo niet ruiken welke interpretatie van de opgave de juiste is...

Ik kan dat ook niet ruiken hoor, en helaas heb ik ook geen kristallen bol. Maar ik kan uit de moeilijkheidsgraad van de oefening , de manier van vragen stellen van de TS, enz... wel een en ander afleiden, en op basis daarvan gefundeerde veronderstellingen maken.
---WAF!---

#12

Daaf

    Daaf


  • >25 berichten
  • 48 berichten
  • Gebruiker

Geplaatst op 19 oktober 2012 - 04:30

@ Daaf: Ok: En hoeveel was die totale lengte? (Lees de opgave na) Vul in. 2l+6b=...
We hebben hier nog wel 2 onbekenden, druk nu 1 onbekende (je mag kiezen dewelke: l of b) in functie van de andere onbekende, net zoals je in je eerste post deed (maar dan met de foute formule)


@ eezacque: Zijn er dan zoveel manieren om een rechthoek te verdelen in 5 gelijke rechthoeken, want dat staat toch in de opgave?


720=2l+6b

2l= 720-6b

en dan probeerde ik l= (720-6b)/2=360-3b=l maar uiteindelijk raakte de 720m draad niet op dus ik weet niet of dit de juiste start is.

@ 5 gelijke rechthoeken zijn de bedoeling, dus gewoon l l l l l l maar er moet wel de maximale opp. benut worden die 720m draad max kan mogelijk maken.
Ik hoop dat ik het wat duidelijk uitleg.

Alvast bedankt (ik ben hier niet goed in).

#13

*_gast_eezacque_*

  • Gast

Geplaatst op 19 oktober 2012 - 05:04

Je bent op de goede weg, nu moet je alleen nog de oppervlakte maximaliseren, dat wordt een tweedegraadsvergelijking, een parabool voor de intimi, waarvan je de top moet zien te vinden...

#14

Daaf

    Daaf


  • >25 berichten
  • 48 berichten
  • Gebruiker

Geplaatst op 19 oktober 2012 - 05:39

720= 2.l + 6.b

2l= 720 – 6b

(720 –6 b).6b

b= x en f(x)= 360.3x – 6x2

-b/2a= -360/-6= 90

b= 90 en 2l= 360 - 90

l= 270

???

720= 2.l + 6.b

2l= 720 – 6b

(720 –6 b).6b

b= x en f(x)= 360.3x – 3x2

-b/2a= -360/-3= 180

b= 90 en 2l= 360 - 180

l= 180

???


#15

*_gast_eezacque_*

  • Gast

Geplaatst op 19 oktober 2012 - 06:43

Je gaat iets te snel: schrijf duidelijk per stap op wat je doet.
De formule voor oppervlakte lijkt niet te kloppen?

Afgezien daarvan ben je er bijna...






Also tagged with one or more of these keywords: wiskunde

0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures