Springen naar inhoud

Limiet



  • Log in om te kunnen reageren

#1

Functie

    Functie


  • >100 berichten
  • 118 berichten
  • Verbannen

Geplaatst op 02 mei 2013 - 18:42

In mijn boek (Delta 4/5 voor 6/8 uur) vraagt men de limiet te berekenen. (het betreft de LINKERlimiet van x die 3 nadert)

LaTeX
LaTeX
LaTeX

(-0 is een (allicht foute) notatie die ik graag gebruik om een negatief getal aan te duiden dat bijna 0 is)

LaTeX
LaTeX is onbepaald

Wat nu?
Het boek geeft als antwoord LaTeX
Ik ben er zeker van dat het dit keer geen onnozel tekenfoutje betreft ;)

Alvast bedankt!

Veranderd door Functie, 02 mei 2013 - 18:47

"We cannot solve our problems with the same thinking we used when we created them."

- Albert Einstein


Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

JorisL

    JorisL


  • >250 berichten
  • 555 berichten
  • Ervaren gebruiker

Geplaatst op 02 mei 2013 - 19:02

Hoe kan je de tweede breuk nog schrijven (merkwaardig product).

Dan kan je een aantal rekenregels gebruiken (om het 'exact' te tonen).

#3

Functie

    Functie


  • >100 berichten
  • 118 berichten
  • Verbannen

Geplaatst op 02 mei 2013 - 19:32

Dan nog zie ik niet in waarom mijn antwoord fout is...
Waarom zou je willen ontbinden?

de tweede breuk wordt dan LaTeX en nu?

"We cannot solve our problems with the same thinking we used when we created them."

- Albert Einstein


#4

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 02 mei 2013 - 20:05

Dan nog zie ik niet in waarom mijn antwoord fout is...

De regel LaTeX geldt enkel als beide limieten bestaan én eindig zijn. Daar zit dus jouw fout. Even heel extreem: als wat jij doet altijd mag, dan LaTeX .
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#5

Functie

    Functie


  • >100 berichten
  • 118 berichten
  • Verbannen

Geplaatst op 02 mei 2013 - 20:10

en daar zit een regel die ik nodig had :) ik wilde dus voornamelijk weten waarom het zo was...maar goed, we zitten dus met de nieuwe 2de breuk...wat nu?

"We cannot solve our problems with the same thinking we used when we created them."

- Albert Einstein


#6

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 02 mei 2013 - 20:22

Wel, zet eens alles op gelijke noemer. Je hebt iets van deze vorm: LaTeX en dat is natuurlijk gelijk aan LaTeX .
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#7

Functie

    Functie


  • >100 berichten
  • 118 berichten
  • Verbannen

Geplaatst op 02 mei 2013 - 20:24

ok, het is me nu allemaal duidelijk :D bedankt, Drieske :)
En, die regel die je gaf, geldt dat ook voor delen, vermenigvuldigen enzo?

"We cannot solve our problems with the same thinking we used when we created them."

- Albert Einstein


#8

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 02 mei 2013 - 20:27

Het is daar inderdaad hetzelfde principe. Een ander (extreem) voorbeeld: LaTeX . Hetzelfde voorbeeld werkt bij delen.
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#9

Functie

    Functie


  • >100 berichten
  • 118 berichten
  • Verbannen

Geplaatst op 02 mei 2013 - 20:31

Is er trouwens een bepaalde oplossing voor het voorbeeld dat je net gaf?

Zijn er ergens oefeningen 'van hetzelfde niveau' als in dit topic?

"We cannot solve our problems with the same thinking we used when we created them."

- Albert Einstein


#10

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 02 mei 2013 - 20:42

Wat bedoel je met oplossing? Ik geef die voorbeelden om een tegenstrijdigheid te tonen en dus uit te leggen waarom je limiet én moet bestaan én eindig zijn vooraleer je mag splitsen.

En het internet staat vol met oefeningen over limieten ;). Maar je boek wsl ook al hoor.
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#11

Functie

    Functie


  • >100 berichten
  • 118 berichten
  • Verbannen

Geplaatst op 02 mei 2013 - 20:58

ahjaa okee :P is toch wel even wennen, die limieten o.O
is er trouwens een notatie voor 'een getal dat nul positief/negatief nadert', om toch maar geen 0 te hoeven schrijven in een breuk ofzo?

"We cannot solve our problems with the same thinking we used when we created them."

- Albert Einstein


#12

Drieske

    Drieske


  • >5k berichten
  • 10217 berichten
  • Moderator

Geplaatst op 03 mei 2013 - 09:53

Allereerst, je begrijpt dus dat die rekenregels niet altijd gelden?

En er zijn wel wat notaties. Maar het voordeel bij wiskunde is: als jij uitlegt wat je bedoelt met jouw notatie, is er geen probleem. Maar goed, wat courante notaties: LaTeX betekent dat x "dalend" nadert naar a (je begrijpt wat ik hiermee bedoel?) en LaTeX dat x "stijgend" nadert naar a. Verder heb je ook nog LaTeX waarmee we bedoelen "dalend" (of "langs rechts") en LaTeX wat weer "stijgend" (of "langs links") is..
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.

#13

mathfreak

    mathfreak


  • >1k berichten
  • 2456 berichten
  • Ervaren gebruiker

Geplaatst op 03 mei 2013 - 14:09

Verder heb je ook nog LaTeX

waarmee we bedoelen "dalend" (of "langs rechts") en LaTeX wat weer "stijgend" (of "langs links") is..

Hier in Nederland gebruiken we voor LaTeX de notatie LaTeX en voor LaTeX de notatie LaTeX .
"Mathematics is a gigantic intellectual construction, very difficult, if not impossible, to view in its entirety." Armand Borel






Also tagged with one or more of these keywords: wiskunde

0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures