Springen naar inhoud

Knik berekening


  • Log in om te kunnen reageren

#1

Jasperse

    Jasperse


  • >25 berichten
  • 68 berichten
  • Ervaren gebruiker

Geplaatst op 26 september 2014 - 12:54

Beste Forumleden,

 

Ik vroeg mij af hoe ik de knik berekening toe moet passen als de belasting niet in het center van het profiel staat.

 

Ik heb een IPE profiel: (zie bijlagen)

 

Deze wordt belast waar de zwarte stip staat.

 

deze kan echter nog verplaatst worden in de afstand ten opzichte van het profiel dus daarvoor hou ik afstand x

 

Nou is de formule voor Eulerknik

 

Pk= (Pi x E x I) / Lk²

 

Stel ik gebruik een IPE 220

 

E= 2.1 x 10^5 N/mm²

Iz = 2.049.00 mm4

Iy = 27.720.000 mm4

 

Hoe kan ik hierbij rekening houden met een kracht die niet in het midden van het profiel rust.

 

Ik hoop dat jullie mij verder kunnen helpen

 

mvg,

 

Jasper

 


Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

aadkr

    aadkr


  • >5k berichten
  • 5441 berichten
  • Pluimdrager

Geplaatst op 26 september 2014 - 16:37

zie je kans om een nette tekening te maken van de situatie.


#3

In physics I trust

    In physics I trust


  • >5k berichten
  • 7384 berichten
  • Moderator

Geplaatst op 26 september 2014 - 18:49

Die excentriciteit zal voor een moment P*e zorgen.

"C++ : Where friends have access to your private members." — Gavin Russell Baker.

#4

Jasperse

    Jasperse


  • >25 berichten
  • 68 berichten
  • Ervaren gebruiker

Geplaatst op 27 oktober 2014 - 08:27

Ik heb een voorbeeld toegevoegd.

 

Het idee is om een dek te laten bewegen tussen 4 IPE staanders door middel van tandheugels op de palen en aandrijving op de hoeken van het dek.

 

Nu wil ik hiervoor de IPE profielen berekenen echter weet ik niet goed hoe ik dit moet doen.

 

De IPE profielen worden op de grond vast gezet en bovenin geschoord zodat deze onderling verbonden zijn

 

Mvg,

 

Jasper

Veranderd door Jasperse, 27 oktober 2014 - 08:31


#5

xansid

    xansid


  • >100 berichten
  • 175 berichten
  • Ervaren gebruiker

Geplaatst op 27 oktober 2014 - 12:08

Ik kan die bijlagen niet vinden...
Maar je kan Eulerknik niet gebruiken bij een excentrische last, dan krijg je een combinatie van buig en knik en kan je volgens mij het beste het princiepe van minimum van potentiële energie toepassen.


#6

physicalattraction

    physicalattraction


  • >1k berichten
  • 3101 berichten
  • Moderator

Geplaatst op 27 oktober 2014 - 12:54

Opmerking moderator :

Dit onderwerp past beter in het subforum Constructie- en sterkteleer, en is daarom verplaatst.


#7

Jasperse

    Jasperse


  • >25 berichten
  • 68 berichten
  • Ervaren gebruiker

Geplaatst op 27 oktober 2014 - 13:13

Doet het bestand het nu wel?

Bijgevoegde miniaturen

  • voorbeeld.JPG

#8

Jasperse

    Jasperse


  • >25 berichten
  • 68 berichten
  • Ervaren gebruiker

Geplaatst op 27 oktober 2014 - 13:33

Misschien verkeerd gedacht door mij maar als ik er inderdaad voor kies om de 4 staanders (IPE) bovenin te verbinden met elkaar kan er dan niet gewoon berekend worden met de euler knik?

 

door het verbinden met elkaar kan namelijk de afzondelijke IPE niet meer naar binnen verbuigen door de belasting van het dek.


#9

Jasperse

    Jasperse


  • >25 berichten
  • 68 berichten
  • Ervaren gebruiker

Geplaatst op 03 november 2014 - 10:12

iemand die me misschien verder kan helpen?


#10

Eljee

    Eljee


  • 0 - 25 berichten
  • 20 berichten
  • Gebruiker

Geplaatst op 09 november 2014 - 21:16

Als je de profielen bovenin kunt verbinden heeft dat invloed op de kniklengte waarmee je mag rekenen.

 

Hoe ver moet het dek op en neer / hoe lang had je de profielen gedacht?

“Since we cannot know all there is to be known about anything, we ought to know a little about everything.”

-Blaise Pascal

#11

Jasperse

    Jasperse


  • >25 berichten
  • 68 berichten
  • Ervaren gebruiker

Geplaatst op 21 november 2014 - 10:01

de profielen worden 10 meter.

het dek zal stoppen op 50 cm boven de grond en tot 8 meter omhoog lopen


#12

retranchement

    retranchement


  • >25 berichten
  • 27 berichten
  • Gebruiker

Geplaatst op 25 november 2014 - 17:33

Als je de vier kolommen koppelt boven het geplande en beweegbare dek en dit is op zich star en blijft in eenzelfde horizontaal vlak bij beweging,dan kun je de totale last van de gehele constructie verdelen in vier parten en de belasting van een part op elke kolom nemen op het oplegpunt op de tandheugel.

Dan kun je dus de excentrische afstand berekenen en de daarbij behorende last opnemen in de berekening.
Bereken wel de knik in beide richtingen van een kolom,omdat je met een grote lengte werkt,ook als er geplande steunen tegen de zwakste zijden worden gemaakt.

Veranderd door retranchement, 25 november 2014 - 17:34


#13

Eljee

    Eljee


  • 0 - 25 berichten
  • 20 berichten
  • Gebruiker

Geplaatst op 25 november 2014 - 19:19

Volgens Hibbeler Sterkteleer kan dit berekend worden met de secans formule.

In google books is een voorbeeld van het betreffende hoofdstuk (deel 2e) in te zien

In hetzelfde hoofdstuk vind je ook de correcte versie voor de formule voor Euler knik uit je topic start.

 

Overigens vind ik de grootte van deze constructie wat ver gaan voor een forum als dit.

“Since we cannot know all there is to be known about anything, we ought to know a little about everything.”

-Blaise Pascal

#14

retranchement

    retranchement


  • >25 berichten
  • 27 berichten
  • Gebruiker

Geplaatst op 27 november 2014 - 16:22

@Eijee

Volgens mij zijn er op dit forum allerhande laag-en hoog en hoger geschoolden met vragen
over hun leerproblemen;dit lijkt me iets voor hts-ers (sorry,hogescholiers) of mogelijk studenten in beginfase van een Uni of PBNA,ed.

De topic met constructie is wel goed terecht gekomen!

Veranderd door retranchement, 27 november 2014 - 16:23






0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures