Springen naar inhoud

Bepalen van het domein en het bereik van een veeltermfunctie


  • Log in om te kunnen reageren

#1

Stef31

    Stef31


  • >250 berichten
  • 609 berichten
  • Ervaren gebruiker

Geplaatst op 19 januari 2006 - 12:42

Beste studenten

Hoe kan je het domein en het bereik van een veeltermfunctie bepalen want dat is redelijk lang geleden dat ik dat nog heb gezien en moet het opnieuw gaan toepassen en staat nergens in de cursus

Kan iemand dat eens uitleggen met een voorbeeld voor het bepalen van het domein en het bereik de rest kan ik wel heeft het iets te maken met de nulpunten

Met vriendelijke groeten

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Rogier

    Rogier


  • >5k berichten
  • 5679 berichten
  • VIP

Geplaatst op 19 januari 2006 - 12:51

Het domein van een normale veelterm functie is niet beperkt, dus gewoon heel :P.

Het bereik is eveneens :P, tenzij het een nuldegraads functie is, dan is het een constante functie en bestaat het bereik uit { f(:P) }

(update) sorry, vergissing, alleen van veeltermfuncties van oneven graad is het bereik :D. Bij een veeltermfunctie van even graad is het bereik van de vorm [f©,:)) of (-:roll:,f©) voor een zeker getal c, dus heeft de functie een minimum of maximum. Een minimum als de coŽfficient voor de hoogste macht van x positief is, een maximum als deze negatief is.

Die c kun je bepalen door f'©=0 op te lossen en bij meerdere oplossingen te kijken voor welke c f© maximaal danwel minimaal is.

Voorbeeld:

f(x) = 3x2+12x-15
Dit is een tweedegraads functie en de coÔfficient voor de hoogste macht (x2) is positief (3), dus heeft de functie een minimum. Dit minimum is v/d vorm f© met f'©=0, en f'© = 6x+12, dit is 0 als c=-2, dit is tevens de enige c dus is f© = -27 ook het minimum. Het domein is :) en het bereik is [-27,:P).

f(x) = 2x3-5x2+7x-4
Dit is een derdegraadsfunctie dus het domein is :P en het bereik ook.
In theory, there's no difference between theory and practice. In practice, there is.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures