Springen naar inhoud

Een (simpel?) vraagje


  • Log in om te kunnen reageren

#1

Fuwisu

    Fuwisu


  • >25 berichten
  • 32 berichten
  • Gebruiker

Geplaatst op 29 september 2006 - 14:44

Je hebt 243 mogelijke getallen bestaande uit 5 cijfers maar je mag enkel 1,2,3 gebruiken.

Als je al deze getallen van klein naar groot rangschikt zou 1122 op de 5de plaats komen, maar welk getal zou er op de 100ste plaats komen?
Al heel de dag over zitten nadenken hoe dit te vinden behalve al de cijfers op te schrijven. Kan iemand mij helpen? Ook redelijk moeilijk om te vinden aangezien mijn RSZ alleen decimaal is.

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

EvilBro

    EvilBro


  • >5k berichten
  • 6703 berichten
  • VIP

Geplaatst op 29 september 2006 - 15:30

Als je al deze getallen van klein naar groot rangschikt zou 1122 op de 5de plaats komen

Daar ben ik het niet mee eens. 1122 bestaat niet uit 5 cijfers. Ik neem aan dat je 11122 bedoelt?

, maar welk getal zou er op de 100ste plaats komen?

Beschouw de notatie eens als een vermomt drietallig stelsel.

#3

Safe

    Safe


  • >5k berichten
  • 9903 berichten
  • Pluimdrager

Geplaatst op 29 september 2006 - 15:36

Evilbro bedoelt: 11113 (3),11133 (9), 11333 (27), 13333 (81), enz.
Het getal tussen haakjes is het rangnummer als je de getallen rangschikt

#4

Fuwisu

    Fuwisu


  • >25 berichten
  • 32 berichten
  • Gebruiker

Geplaatst op 29 september 2006 - 15:45

Hmm ik begrijp niet goed hoe je daaraan komt, kun je bijvoorbeeld afleiden op welke plaats 13231 staat?

#5

Safe

    Safe


  • >5k berichten
  • 9903 berichten
  • Pluimdrager

Geplaatst op 29 september 2006 - 15:59

Hmm ik begrijp niet goed hoe je daaraan komt, kun je bijvoorbeeld afleiden op welke plaats 13231 staat?

Moet ik begrijpen, dat je de gegeven getallen met hun rangnr niet begrijpt?

#6

eendavid

    eendavid


  • >1k berichten
  • 3751 berichten
  • VIP

Geplaatst op 29 september 2006 - 16:00

LaTeX (de laatste 1 omdat je met het getal 0 van het driedelige stelsel de positie 1 wil associŽren) probeer nu zelf eens het 100ste getal te vinden. Merk de analogie op met het 10delige stelsel. Probeer nu zelf eens de correcte getallen te vinden.

(als laatste tip: bedenk in de som die ik hierboven schreef het getal nooit groter wordt dan LaTeX zolang het getal voor LaTeX gelijk is aan 0)

#7

EvilBro

    EvilBro


  • >5k berichten
  • 6703 berichten
  • VIP

Geplaatst op 29 september 2006 - 16:15

Hmm ik begrijp niet goed hoe je daaraan komt, kun je bijvoorbeeld afleiden op welke plaats 13231 staat?


Als je het decimale getal 4503 hebt dan betekent dit eigenlijk:
LaTeX
Dit is een tientallig stelsel.

Hetzelfde kun je doen met een drietallig stelsel. De basis is in plaats van 10 dan 3. Een getal 2120 is dan gelijk aan:
LaTeX
Het getal 2120 in een drietallig stelsel is gelijk aan 69 in een tientallig stelsel. Let op dat de factor waarmee je een macht vermenigvuldigd nooit groter mag zijn dan de basis van het stelsel (3 of 4 is dus geen juiste representatie in een drietallig stelsel).

We hebben nu dus (getal decimaal: getal drietallig: getal uit jouw systeem):
0 : 00000 : 11111
1 : 00001 : 11112
2 : 00002 : 11113
3 : 00010 : 11121
4 : 00011 : 11122

Het n-de getal in je systeem is dus (n-1) gerepresenteerd in een drietallig stelsel (en dan alle nullen, enen en tweeen vervangen door enen, tweeen en drieen respectievelijk).

De andere kant op is het hele verhaal de andere kant op, dus:
13231 ->02120 = 2120 -> 69 -> 70ste positie.

#8

Fuwisu

    Fuwisu


  • >25 berichten
  • 32 berichten
  • Gebruiker

Geplaatst op 29 september 2006 - 21:58

Ben er nu al een half uur op aan't staren zonder dat het tot mij doordringt. Ik begrijp hoe je een getal uit het driedelig stelsel omzet naar een decimaal getal, maar andersom wilt niet lukken.
Het enigste gegeven dat ik heb is "100", in een decimaal stelsel zou op de 100ste plaats bijgevolg "100" staan. Nu om 100 om te zetten zit ik al met het probleem dat het maar 3 cijfers heeft en ik er 5 nodig heb?

0*3^5 + 0*3^4 + 1*3^3 + 0*3^2 + 0*3^1 ?

Maar dit getal is veel te klein om juist te zijn.

#9

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 29 september 2006 - 22:08

Begrijp je dit?

We hebben nu dus (getal decimaal: getal drietallig: getal uit jouw systeem):
0 : 00000 : 11111
1 : 00001 : 11112
2 : 00002 : 11113
3 : 00010 : 11121
4 : 00011 : 11122

Kan je zo ook 100 (of: 99? het ging namelijk om de positie) in het drietallig stelsel schrijven, waarna je eenvoudig over kan gaan naar jouw systeem?
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#10

EvilBro

    EvilBro


  • >5k berichten
  • 6703 berichten
  • VIP

Geplaatst op 29 september 2006 - 22:52

Ik begrijp hoe je een getal uit het driedelig stelsel omzet naar een decimaal getal, maar andersom wilt niet lukken.

Stel dat ik het getal 99 om wil zetten naar het drietallige equivalent dan is een methode de volgende: Deel het getal door 3 en noteer de rest. Herhaal dit nu met het gedeelde getal (afgerond naar beneden) totdat het getal 0 is. Als je nu de rest-getallen in omgekeerde volgorde leest dan heb je de drietallige representatie. Dus:
99/3 = 33, rest = 0
33/3 = 11, rest = 0
11/3 = 3, rest = 2
3/3 = 1, rest = 0
1/3 = 0, rest = 1

99 is in drietallig stelsel: 10200. Even controleren of dit echt zo is:
LaTeX

Het enigste gegeven dat ik heb is "100", in een decimaal stelsel zou op de 100ste plaats bijgevolg "100" staan.

Niet als je begint te tellen bij 0. :)

Nu om 100 om te zetten zit ik al met het probleem dat het maar 3 cijfers heeft en ik er 5 nodig heb?

0*3^5  +  0*3^4  +  1*3^3  +  0*3^2  +  0*3^1    ?

Dit is niet juist. Je zoekt die a, b, c, d en e zodat geldt:
LaTeX
waarbij geen van de letters groter mag zijn dan 2 (of kleiner dan 0).

Maar dit getal is veel te klein om juist te zijn.

Dat komt omdat je een poging doet om de drietallige representatie 100 om te zetten naar een decimale representatie (eigenlijk doe je het met 1000 omdat je de machten 1 te hoog hebt gekozen) in plaats van andersom.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures