Springen naar inhoud

Relativiteitstheorie: wiens klok loopt achter?


  • Log in om te kunnen reageren

#1


  • Gast

Geplaatst op 02 december 2004 - 09:45

(deze vraag is afkomstig van Fok WFL)

Stel dat er 3 ruimteschepen zijn. Eerst twee identieke schepen (P en Q) die stil naast elkaar hangen (stil ten opzichte van elkaar althans), en ze spreken af: we starten tegelijk onze stopwatch, en dan vliegen we allebei met dezelfde snelheid (die niet per se heel hoog hoeft te zijn) en hetzelfde versnellingspatroon (voorgeprogrammeerd in hun identieke computers) één lichtjaar in tegenovergestelde richting, en remmen daar weer af tot dezelfde stilstand die we nu ervaren.

Het idee is dus dat P en Q dan ver uit elkaar liggen, stil staan t.o.v. elkaar, en dezelfde tijd op hun stopwatch hebben staan. En er is vanaf dat moment geen versnelling of kracht op ze van toepassing.

Nu vliegt er later ineens een derde schip R vlak langs P richting Q, en P heeft een grote neon display op het dak staan met daarop de stand van zijn stopwatch. R zet zijn stopwatch gelijk met die van P op het moment dat hij P passeert. R heeft een constante snelheid van 0.99c ten opzichte van P en Q (dus ook voor R geldt: geen sprake van versnelling of kracht). R passeert later ook Q. En Q heeft ook zo'n neon display met zijn stopwatch erop. R kan nu de stand op zijn eigen stopwatch met die van Q vergelijken. De vraag is nu: welk verschil ziet hij?

Door het grote snelheidsverschil lijkt me dat hun tijd niet gelijk loopt, maar ik snap niet hoe je kunt bepalen of de stopwatch van R voor of achter loopt op Q.

Let op: het gaat erom dat je niet weet wie in absolute zin de grootste snelheid heeft, want zoiets is er niet. Je weet alleen dat R een constant snelheidsverschil van 0.99c heeft t.o.v. P en Q. Het hoeft niet zo te zijn dat R, voordat hij met met constante snelheid langs kwam vliegen, eerst is versneld tot 0.99c. Wie weet hingen ze ooit alledrie naast elkaar, zijn P en Q een paar lichtjaar weggevlogen van R, keerden ze toen om en vlogen ze met snelheid 0.99c weer naar R. Op het moment dat ze naast elkaar met snelheid 0.99c riching R vliegen hangen ze ten opzichte van elkaar stil, dus dat zou net zo goed de begin situatie van hierboven kunnen zijn, R komt dan later vanzelf langs schieten met 0.99c (P en Q zijn dan wel versneld maar versnellen nu niet meer, dus inertiaal frame, maar goed die info heb je dus niet, je weet niet hoe de beginsituatie van hierboven op deze manier tot stand is gekomen).

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Vortex29

    Vortex29


  • >250 berichten
  • 683 berichten
  • Verbannen

Geplaatst op 02 december 2004 - 11:27

Dit effect vergeet je misschien:
Op het moment dat R bij P is, staat volgens R de klok in Q vóór op de klok van P.

Het antwoord op jou vraag:
Op het moment dat R bij Q aankomt, ziet R dat zijn klok achter staat op de klok in Q.

#3

peterdevis

    peterdevis


  • >1k berichten
  • 1393 berichten
  • Ervaren gebruiker

Geplaatst op 02 december 2004 - 17:14

Het antwoord op jou vraag:
Op het moment dat R bij Q aankomt, ziet R dat zijn klok achter staat op de klok in Q.


Pen Q zitten in hetzelfde referentiestelsel zitten (ze staan stil tov elkaar) Het referentiestelsel van P en Q beweegt met een snelheid van 0,99c tov R.
R ziet de tijd trager verstrijken in het referentiestelsel van P en Q, maar Pen Q zien de tijd trager lopen bij R.

Dus R zal besluiten dat de klok van Q achterloopt.

#4

Vortex29

    Vortex29


  • >250 berichten
  • 683 berichten
  • Verbannen

Geplaatst op 02 december 2004 - 19:12

Dus R zal besluiten dat de klok van Q achterloopt.

Spreken wij elkaar nu tegen?

#5

ikkeikkeikke

    ikkeikkeikke


  • >100 berichten
  • 153 berichten
  • Ervaren gebruiker

Geplaatst op 02 december 2004 - 21:25

Volgens mij is het probleem gelijk aan de tweelingparadox:

Hoe is het mogelijk dat de broer in het ruimteschip bij terugkeer op aarde minder oud is dan zijn broer die de ruimtereis niet heeft gemaakt? De snelheid t.o.v. elkaar is immers voor beide broers gelijk! Het is onmogelijk te zeggen wie er ten opzichte van wie beweegt!

De oplossing is dat de broer in het ruimteschip een verandering van referentiestelsel heeft ondergaan (hij is versneld) en de achter gebleven broer niet.

Zie ook http://science.howst.../relativity.htm

#6

Vortex29

    Vortex29


  • >250 berichten
  • 683 berichten
  • Verbannen

Geplaatst op 02 december 2004 - 21:30

De oplossing is dat de broer in het ruimteschip een verandering van referentiestelsel heeft ondergaan.

In het probleem waar deze topic over gaat vindt ik niets terug over versnelling. Jij wel?

#7

ikkeikkeikke

    ikkeikkeikke


  • >100 berichten
  • 153 berichten
  • Ervaren gebruiker

Geplaatst op 02 december 2004 - 21:34

De oplossing is dat de broer in het ruimteschip een verandering van referentiestelsel heeft ondergaan.

In het probleem waar deze topic over gaat vindt ik niets terug over versnelling. Jij wel?


Door explicite vermelding van deze zin:

"het gaat erom dat je niet weet wie in absolute zin de grootste
snelheid heeft, want zoiets is er niet. Je weet alleen dat R een
constant snelheidsverschil"


Dacht ik, ik waag eens een gokje in de uitleg.

#8

Vortex29

    Vortex29


  • >250 berichten
  • 683 berichten
  • Verbannen

Geplaatst op 02 december 2004 - 21:37

En dit dan?

(dus ook voor R geldt: geen sprake van versnelling of kracht)


#9

Bert

    Bert


  • >250 berichten
  • 718 berichten
  • Ervaren gebruiker

Geplaatst op 02 december 2004 - 21:45

Het is fundamenteel anders dan de tweeling paradox. Er wordt in dit probleem namelijk niet versneld (de versnelling in het begin is niet relevant). Het werkelijke gedachtenexperiment begint pas als R met grote snelheid P passeert.
In deze aanvangssituatie zijn P en Q het erover eens dat hun klokken gelijk lopen. Neem aan dat de klok van P op 0 uur staat op het moment dat R voorbijkomt. Als R er, in de waarneming van P en Q een uur over doet om bij Q te komen dan zal R aflezen dat de klok van Q op 1 uur staat op het moment dat hij voorbij komt. Dat lijkt in tegenspraak met het feit dat het tijdverloop in de waarneming van R korter is dan een uur, maar dat wordt verklaard door het feit dat R van mening is dat de klokken van P en Q niet gelijk lopen. Op basis van het feit dat het volgens de klok van Q 1 uur is op het moment dat R voorbijkomt terwijl er voor R minder tijd is verlopen kun je afleiden dat in de beleving van R de klok van Q voorloopt.

#10

Rogier

    Rogier


  • >5k berichten
  • 5679 berichten
  • VIP

Geplaatst op 03 december 2004 - 13:11

Dit effect vergeet je misschien:
Op het moment dat R bij P is, staat volgens R de klok in Q vóór op de klok van P.

Staat voor, of loopt sneller?
Waarom zou hij voor staan, als P en Q (die in hetzelfde inertiaalstelsel zitten) dezelfde tijd op hun klok hebben staan, komt het beeld van Q's klok pas later bij R aan dan het beeld van P's klok, rond het moment dat R bij P is althans. Dus wat dat betreft zou R bij Q juist een vroegere tijd dan bij P zien lijkt me?

Het antwoord op jou vraag:
Op het moment dat R bij Q aankomt, ziet R dat zijn klok achter staat op de klok in Q.

Bij P heeft R zijn klok met die van P gelijk gezet, en Q heeft dezelfde tijd op z'n klok als P. Dus als R bij aankomst bij Q ziet dat zijn klok achterloopt op die van Q, is de tijd dus voor R trager verlopen dan voor P en Q, klopt dat?

Waarom zou dat zo zijn, de situatie voor P & Q is in feite hetzelfde als die voor R, want P en Q hebben eigenlijk een snelheid van 0.99c t.o.v. R. Dus waarom zou hun tijd dan niet trager verlopen dan die van R? Dat ligt er toch maar aan vanuit wiens perspecfief je redeneert? M.a.w. wie de waarnemer is?
In theory, there's no difference between theory and practice. In practice, there is.

#11

Rogier

    Rogier


  • >5k berichten
  • 5679 berichten
  • VIP

Geplaatst op 03 december 2004 - 13:13

Volgens mij is het probleem gelijk aan de tweelingparadox:

Ik denk dat deze situatie anders is, er wordt hier niet versneld.
In theory, there's no difference between theory and practice. In practice, there is.

#12

Vortex29

    Vortex29


  • >250 berichten
  • 683 berichten
  • Verbannen

Geplaatst op 03 december 2004 - 13:23

Staat voor, of loopt sneller?

Staat voor en loopt langzamer.

Dus wat dat betreft zou R bij Q juist een vroegere tijd dan bij P zien lijkt me?

De relativiteitstheorie beschrijft niet wat je ziet, maar wat in er werkelijkheid gebeurt.

#13

peterdevis

    peterdevis


  • >1k berichten
  • 1393 berichten
  • Ervaren gebruiker

Geplaatst op 03 december 2004 - 13:56

Dit is wel degelijk het tweelingenparadox in zijn eenvoudigste vorm.
Twee waarnemers die ten opzichte van elkaar éénparig bewegen zullen elkaars klokken trager zien lopen.

#14


  • Gast

Geplaatst op 03 december 2004 - 14:48

Dit is wel degelijk het tweelingenparadox in zijn eenvoudigste vorm.
Twee waarnemers die ten opzichte van elkaar éénparig bewegen zullen elkaars klokken trager zien lopen.

En daar zit precies mijn probleem, want:

Als Q een foto maakt van de situatie waarin P en R elkaar passeren, dan ziet hij daarop gelijke standen op hun stopwatches (per definitie, want R zet daar zijn stopwatch gelijk met die van P). Verder loopt voor Q de stopwatch van R langzamer, dus zal voor Q de stopwatch van R achterlopen als ze elkaar ontmoeten.

Voor R staan de stopwatches van P en hemzelf eveneens gelijk als P en R elkaar passeren, maar voor R lopen de stopwatches van P en Q juist langzamer. Dus voor R zal de stopwatch van Q achterlopen als ze elkaar ontmoeten.

Maar dat is een tegenspraak, want Q en R passeren elkaar maar één keer, allebei met een bepaalde stand op hun stopwatch, en voor de twee standen bij die ontmoeting kan het niet zo zijn dat volgens Q geldt: tQ>tR, en volgens R: tQ<tR.
 

#15

ikkeikkeikke

    ikkeikkeikke


  • >100 berichten
  • 153 berichten
  • Ervaren gebruiker

Geplaatst op 03 december 2004 - 15:57

bij die ontmoeting kan het niet zo zijn dat volgens Q geldt: tQ>tR, en volgens R: tQ<tR.


Daar zat ik ook vast. Het enige wat ik kan bedenken is dat het niet mogelijk is dat ze bij elkaar de juiste tijd kunnen aflezen, maar dat klinkt een beetje als een houtje touwtje oplossing





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures