Springen naar inhoud

Formule voor z impedantie


  • Log in om te kunnen reageren

#1

A. Bakker

    A. Bakker


  • 0 - 25 berichten
  • 19 berichten
  • Gebruiker

Geplaatst op 01 april 2007 - 11:40

Ik kwam de volgende formule tegen (zie bijlage). Wie kan mij deze formule uitleggen aan de hand van eenvoudigere formules (afleiden). Ik dacht zelf dat het te maken heeft met complexe impedantie waarbij:
R = weerstand met weerstandswaarde R
Xl = weerstand van een spoel
Xc = weerstand van een condensator

"Bij de resonantie frequentie is de weerstand van een parallelkring het hoogst, de spanning over de kring zal dan ook het hoogst zijn." Onder deze regel kwam ik de formule tegen, maar ik kan er niets mee. Wie kan mij verdere uitleg verschaffen?

B.v.d. :-D


impedantie.JPG

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

EvilBro

    EvilBro


  • >5k berichten
  • 6703 berichten
  • VIP

Geplaatst op 01 april 2007 - 14:08

Ik dacht zelf dat het te maken heeft met complexe impedantie waarbij:
R = weerstand met weerstandswaarde R
Xl = weerstand van een spoel
Xc = weerstand van een condensator

'de' weerstand van een spoel/condensator is niet echt iets waar gebruikelijk over gesproken wordt. Hiervoor is het begrip impedantie er. Xl en Xc heten reactanties.

Voor parallelle impedanties geldt:
LaTeX
waarbij Zv de vervangings impedantie van de aan elkaar parallelstaande impedanties Z1, Z2, enz is.

"Bij de resonantie frequentie is de weerstand van een parallelkring het hoogst, de spanning over de kring zal dan ook het hoogst zijn."

De impedantie van de parallelgeschakelde weerstand, spoel en condensator is:
LaTeX
Als we nu even aannemen dat met "de weerstand" bedoeld wordt de magnitude van de complexe impedantie:
LaTeX

#3

bram2

    bram2


  • >250 berichten
  • 255 berichten
  • Ervaren gebruiker

Geplaatst op 01 april 2007 - 15:23

Evilbro: Als Xc een positief getal is, dan ben je een - teken vergeten.

Om meer inzicht te hebben in de formule moet je is Xc & Xl vervangen door

LaTeX
LaTeX

Kijk nu is wat de Z is bij R=0 als functie van de frequentie.
Probeer daarna is te kijken wat er gebeurt als R > 0 wordt.

Als er iets niet lukt zeg je maar waar je vastloopt

Veranderd door bram2, 01 april 2007 - 15:23


#4

EvilBro

    EvilBro


  • >5k berichten
  • 6703 berichten
  • VIP

Geplaatst op 01 april 2007 - 15:35

Evilbro: Als Xc een positief getal is, dan ben je een - teken vergeten.

Maar Xc is geen positief getal.

LaTeX

De reactantie is de imaginaire deel van de complexe impedantie. Voor een condensator geldt voor de impedantie:
LaTeX
dus:
LaTeX


Er zijn trouwens meerdere methodes om de resonantiefrequentie te vinden. Andere beschrijvingen zijn:
- die frequentie waarvoor spanning en stroom in fase lopen.
- die frequentie waarvoor de impedantie volledig reeel is.

#5

bram2

    bram2


  • >250 berichten
  • 255 berichten
  • Ervaren gebruiker

Geplaatst op 01 april 2007 - 16:35

Dan is het inderdaad juist en is het een notatieprobleem. In de formule die A.Bakker bv gaf is de Xc wel positief en staat er een minteken.

#6

EvilBro

    EvilBro


  • >5k berichten
  • 6703 berichten
  • VIP

Geplaatst op 01 april 2007 - 16:37

Dan is het inderdaad juist en is het een notatieprobleem.

Notatietechnisch is er wel meer mis. Ze doen ook alsof de norm van de impedantie gelijk is aan de impedantie.

#7

A. Bakker

    A. Bakker


  • 0 - 25 berichten
  • 19 berichten
  • Gebruiker

Geplaatst op 01 april 2007 - 19:55

Allereerst bedankt voor jullie reacties.

Omdat ik niet al te veel verstand heb op het gebied van impedantie reactantie enz.., heb ik toch nog enkele vragen. Ik was bezig met een LC-kring en nadat ik een stuk had geschreven over de resonantie frequentie kwam ik bij een stukje over de bandbreedte van radiogolven waar ik de formule voor impedantie tegenkwam.
Voor de resonantiefrequetie gebruik ik trouwens de volgende formule:
fr = 1 / (2π√(LēC))

Mijn vragen:
- Hoe komt de laatste stap tot stand bij LaTeX ?? Ik ga er vanuit dat de strepen absoluut strepen zijn, maar de laatste stap volg ik niet.
- Is de formule correct als ik ipv het --teken een +-teken gebruik?
- Waar staat het j-teken voor?

Ik hoop dat jullie mij weer verder kunnen helpen.

#8

A. Bakker

    A. Bakker


  • 0 - 25 berichten
  • 19 berichten
  • Gebruiker

Geplaatst op 02 april 2007 - 18:47

Ok 2 vragen opgelost. j = i, waarbij i een complex getal is met i2=-1, dit verklaart ook gelijk de laatste stap bij Zv. Kan iemand mij vertellen of ik hierin gelijk heb en mijn resterende vraag, waarop het antwoordt volgens mij ja is, uitleggen???

#9

bram2

    bram2


  • >250 berichten
  • 255 berichten
  • Ervaren gebruiker

Geplaatst op 02 april 2007 - 19:08

ivm met het minteken: is afhankelijk van je definitie van Xc, hoe jij het schrijft in je eerste bericht is het juist , op voorwaarde dat Xc positief is (evilbro werkt blijkbaar met een Xc die negatief is). Ik zal ook met positieve Xc werken.

Stel dat R= 0, dan ga je kijken waar Z = oneindig wordt, dit is dus als Xc = Xl dus
LaTeX

Dit is bij LaTeX
Nog is met 2 pi vermeningvuldigen en je hebt de resonantiefrequentie

Neem je nu R> 0 , dan zal Z ipv oneindig maximaal worden, en bij kleine R dus heel groot.

#10

A. Bakker

    A. Bakker


  • 0 - 25 berichten
  • 19 berichten
  • Gebruiker

Geplaatst op 02 april 2007 - 19:56

Ik ga er van uit dat hij positief is en werk met de formule Xc = 1/Cw

#11

A. Bakker

    A. Bakker


  • 0 - 25 berichten
  • 19 berichten
  • Gebruiker

Geplaatst op 02 april 2007 - 20:40

Ik ga er van uit dat hij positief is en werk met de formule Xc = 1/Cw

Als een parallelkring in resonantie is, is de impedantie (Z) hoog. Als de spoel en condensator geen verlies zouden hebben zou de impedantie zelfs oneindig hoog zijn. Maar dat is in de praktijk niet haalbaar, er treedt altijd verlies op, o.a. door de weerstand van het spoeldraad.
De impedantie is dus niet oneindig maar zal een bepaalde waarde hebben, het lijkt dus net of er parallel aan de spoel en condensator een weerstand geschakeld zit, dit noemen we de parallelweerstand van de kring Rp.
Rp=2π∙f∙L∙Q

Zou de formule die in de eerst post genoemd is niet bij dit stuk tekst horen??

#12

EvilBro

    EvilBro


  • >5k berichten
  • 6703 berichten
  • VIP

Geplaatst op 02 april 2007 - 21:02

evilbro werkt blijkbaar met een Xc die negatief is.

Dat doe ik omdat ik met reactantie werk. Volgens mij moet je het over capacitieve en inductieve reactanties hebben als je alles positief wilt hebben (en dan bedoel ik de Xen).

Stel dat R= 0

Dit is fout. Door R nul te stellen sluit je de spoel en de condensator kort. Dit kan je ook zien in de formule. Je krijgt dan immers 1/0 en dat bestaat niet. Wat je misschien wilt doen is R oneindig nemen. Er is echter geen reden om dat te doen. Gewoon de definitie van resonantiefrequentie toepassen is namelijk veel veiliger (gaat altijd goed, terwijl jouw methode denk ik de mist in kan gaan bij hogere orde systemen).

Z moet volledig reeel zijn, dus:
LaTeX

Nog is met 2 pi vermeningvuldigen en je hebt de resonantiefrequentie

Niet vermenigvuldigen...
LaTeX

Veranderd door EvilBro, 02 april 2007 - 21:02


#13

A. Bakker

    A. Bakker


  • 0 - 25 berichten
  • 19 berichten
  • Gebruiker

Geplaatst op 03 april 2007 - 17:49

LaTeX

Zou ik de formule ook kunnen schrijven met:
1ųXL=1ųω L
1ųXC= ω C

Als het zo zou kunnen zou dat wel mooi zijn. Dan kan ik reactantie 'achterwege' laten.

#14

EvilBro

    EvilBro


  • >5k berichten
  • 6703 berichten
  • VIP

Geplaatst op 03 april 2007 - 18:20

Dat kan:

LaTeX

#15

A. Bakker

    A. Bakker


  • 0 - 25 berichten
  • 19 berichten
  • Gebruiker

Geplaatst op 04 april 2007 - 15:50

LaTeX


LaTeX

Ik ga hem er zo maar inzetten. Nogmaals bedankt voor jullie antwoorden.
ps. dat latex is maar vaag, maar wel handig om duidelijke formules mee te maken. :smile:





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures