Springen naar inhoud

Het krachtmoment


  • Log in om te kunnen reageren

#1

Laurence

    Laurence


  • >25 berichten
  • 53 berichten
  • Ervaren gebruiker

Geplaatst op 25 mei 2007 - 07:57

Hallo,

Ik heb als uitleg " Het krachtmoment is rond een punt a is het vectorproduct r * f waarbij r de vector is die het punt a verbindt met het aangrijpingspunt van de kracht F. De vector tau, staat loodrecht op het vlak van r en F. De zin wordt bepaald volgens de kurkentrekregel."

Kan er mij iemand helpen met dit uit te leggen en wanneer dit gebruikt wordt?

Bedankt!


Hoe werkt de rechterhandregel nu ook alweer? Met duim wijsvinger en middelvinger ofzo?

Is het vectorproduct r* F gelijk aan rFsinθ bij berekeningen?

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

phoenixofflames

    phoenixofflames


  • >250 berichten
  • 503 berichten
  • Ervaren gebruiker

Geplaatst op 25 mei 2007 - 08:06

Vooral bij statica van starre lichamen waar de som van de krachten en krachtmoment gelijkgesteld worden aan 0. Ik denk dat dit de belangrijkste toepassing is.
Ik heb het ook al tegengekomen in de cursus electromagnetisme.

R X F = RFsin theta.gif of een symbolische determinant uitwerken

http://nl.wikipedia....ki/Kruisproduct

Veranderd door phoenixofflames, 25 mei 2007 - 08:10


#3

Rov

    Rov


  • >1k berichten
  • 2242 berichten
  • Ervaren gebruiker

Geplaatst op 25 mei 2007 - 09:52

R X F = RFsin theta.gif of een symbolische determinant uitwerken

Daar ben ik het niet mee eens. Het is
LaTeX en LaTeX
met theta de hoek tussen de vectoren r en F.

De rechterhandregel werkt als volgt:
Je duim wijst de richting van de oplossing aan als je met je andere vingers van de eerste vector naar de tweede kan gaan.
Dus als je een rechtshandig positief (x,y,z) assenstelsel hebt dan is LaTeX maar LaTeX . Ik kan het niet echt beter uitleggen zonder plaatjes.

Veranderd door Rov, 25 mei 2007 - 09:56


#4

Laurence

    Laurence


  • >25 berichten
  • 53 berichten
  • Ervaren gebruiker

Geplaatst op 25 mei 2007 - 09:59

Bedankt!

ben ik juist als ik zeg dat er enkel een krachtmoment is als er rotaties zijn?

#5

Rov

    Rov


  • >1k berichten
  • 2242 berichten
  • Ervaren gebruiker

Geplaatst op 25 mei 2007 - 10:16

Het komt er op neer, maar het is niet altijd zo. Stel dat ik een steen in mijn arm recht voor me hou en mijn arm stil kan houden. Dan werkt er een moment op mijn arm met als grootte F x r = mg x r (als de massa van mijn arm te verwaarlozen is). Maar zolang ik de steen omhoog kan houden is er geen rotatie, maar wel een krachtmoment.

#6

Laurence

    Laurence


  • >25 berichten
  • 53 berichten
  • Ervaren gebruiker

Geplaatst op 25 mei 2007 - 10:35

Ik snap het nog altijd niet volledig wanneer er een krachtmoment is en wanneer niet. Bedankt voor de hulp!

Heeft het misschien iets te maken met dat als de kracht niet evenwijdig is met de verplaatsing dat er dan een krachtmoment is?

#7

Rov

    Rov


  • >1k berichten
  • 2242 berichten
  • Ervaren gebruiker

Geplaatst op 25 mei 2007 - 10:52

Inderdaad. Als kracht en verplaatsing evenwijdig zijn, dan is LaTeX en dan is |r x F| = |r|pi.gif|F|[.]0 = 0. Dus geen moment.

#8

Laurence

    Laurence


  • >25 berichten
  • 53 berichten
  • Ervaren gebruiker

Geplaatst op 25 mei 2007 - 13:25

Hangt het krachtmoment van een krachtenkoppel eigenlijk af van het punt waarop men het berekent?

#9

phoenixofflames

    phoenixofflames


  • >250 berichten
  • 503 berichten
  • Ervaren gebruiker

Geplaatst op 25 mei 2007 - 13:37

Ik dacht van niet
Ik lees

"Indien zo'n lichaam op een bepaald tijdstip in rust is, dan is op grond van de wetten van Euler duidelijk dat het in rust zal blijven als en slechts als
F = greek034.gif Fi = 0 en Mo = 0
"Vermist algemeen geldt Mo = OA X F + Ma, volgt verder dat deze evenwichtsvoorwaarden equivalent zijn met
F = 0 en Ma = 0 waarbij A een willekeurig punt is dat al of niet tot het star lichaam behoort."

(Mo = krachtmoment berekent om het middelpunt, Ma = krachtmoment berekent om het punt A )

De kunst is meestal om uw punt A zo te kiezen dat zo veel mogelijk krachtmomenten 0 zijn

Veranderd door phoenixofflames, 25 mei 2007 - 13:40


#10

Rov

    Rov


  • >1k berichten
  • 2242 berichten
  • Ervaren gebruiker

Geplaatst op 25 mei 2007 - 14:02

Je spreekt jezelf tegen. Eerst zeg je "ik dacht van niet", en daarna zeg je "De kunst is meestal om uw punt A zo te kiezen dat zo veel mogelijk krachtmomenten 0 zijn" waar je zegt dat het koppel toch afhangt van het punt.

Het hangt dus wel degelijk af het punt waar je het meet. De kracht zal hetzelfde zijn maar de arm niet. Zeker als je meerdere koppels hebt die op een voorwerp inwerken moet je rekening houden met het rotatiepunt. Het resulterende koppel is dat LaTeX

#11

Laurence

    Laurence


  • >25 berichten
  • 53 berichten
  • Ervaren gebruiker

Geplaatst op 26 mei 2007 - 11:12

Ik heb nog een vraagje: Als je het krachtmoment moet berekenen: τ = R.F, is R dan gelijk aan de lengte van het lichaam waarop de kracht inwerkt? En als de kracht niet loodrecht op het lichaam waarop het inwerkt staat, gebruik je dan de formule τ = R F sin θ in plaats van R.F?

Bedankt

#12

Ruben01

    Ruben01


  • >1k berichten
  • 2902 berichten
  • Ervaren gebruiker

Geplaatst op 26 mei 2007 - 11:46

Ik heb nog een vraagje: Als je het krachtmoment moet berekenen: τ = R.F, is R dan gelijk aan de lengte van het lichaam waarop de kracht inwerkt? En als de kracht niet loodrecht op het lichaam waarop het inwerkt staat, gebruik je dan de formule τ = R F sin θ in plaats van R.F?

Bedankt


Inderdaad, eigenlijk kan je altijd τ = R F sin θ gebruiken maar wanneer je 90 invult krijg je n.
BOINC mee met het WSF-team: <a href="http://www.wetenscha...howtopic=60653" target="_blank">http://www.wetenscha...topic=60653</a>

#13

Phys

    Phys


  • >5k berichten
  • 7556 berichten
  • VIP

Geplaatst op 26 mei 2007 - 11:58

Ik heb nog een vraagje: Als je het krachtmoment moet berekenen: ‚ž = R.F, is R dan gelijk aan de lengte van het lichaam waarop de kracht inwerkt?

Nee! LaTeX is de positievector wijzend van a naar b:
a is het willekeurig gekozen (draai)punt;
b is het aangrijpingpunt van de krachtvector.

'Een krachtmoment berekenen' heeft geen betekenis; je bepaalt altijd een krachtmoment TEN OPZICHTE VAN een punt. Aangezien dit punt willekeurig is (maar meestal is alleen een draaipunt zinnig) is r ook niet altijd hetzelfde, en dus zeker niet gelijk aan de lengte van het lichaam!

En als de kracht niet loodrecht op het lichaam waarop het inwerkt staat, gebruik je dan de formule ‚ž = R F sin θ in plaats van R.F?

Ja, krachtmoment is gedefinieerd zoals Rov schreef:
LaTeX
De grootte van het krachtmoment is
LaTeX
volgens de definitie van het uitproduct.

Kijk ook eens hier

Veranderd door Phys, 26 mei 2007 - 12:01

Never express yourself more clearly than you think.
- Niels Bohr -





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures