Springen naar inhoud

Berekenen zijde gelijkzijdige driehoek in cirkel


  • Log in om te kunnen reageren

#1

C-Power

    C-Power


  • 0 - 25 berichten
  • 1 berichten
  • Gebruiker

Geplaatst op 22 juni 2007 - 19:29

Ik heb als opdracht een vraag op te lossen waar ik niet goed uitkom.

De vraag is: Bereken de zijde van de gelijkzijdige driehoek die precies in een cirkel met straal 6 past.

Afbeelding:

Geplaatste afbeelding

Nu is er in de bijbehorende uitwerkingen het volgende te vinden:

Beschouw de driehoek ABM
Hoek MBA = 1/2 * Hoek B = 1/2 * 60 = 30graden
sin 30graden = AM/MB
--> AM = MB sin 30graden = 6 1/2 = 3
MB^2 = AB^2 + AM^2
--> AB^2 = MB^2 - AM^2 = 6^2 - 3^2
AB^2 = 36 - 9 = 27
AB = [wortel]27 = 3[wortel]3
zijde driehoek = 2AB = 2 3[wortel]3 = 6[wortel]3

Dit is gelijk aan 10,39

Dit topic gaat over exact hetzelfde onderwerp. Ook ik moet het oplossen zonder sinus etc.

http://www.wetenscha...s...c=60553&hl=

(Titel cirkel en driehoek)

Ik heb dus de volgende berekening:

6 = (1/2x) + a
6 = (1/2x) + 3

6 = 1/4x + 9
1/4x = 27
x = 108
x = [wortel]108 = 2 [wortel]27 = 6 [wortel]3

Dit is tot nu toe allemaal correct.

Mijn probleem is echter dat ik moet bewijzen dat de a (zie afbeelding) 3 cm. is. Het klopt wel, maar hoe bewijs ik dit algebraisch o.i.d., dus zonder sinus. Kan dit door gelijkvormigheid, of moet het anders?

Alvast bedankt.

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

jhnbk

    jhnbk


  • >5k berichten
  • 6905 berichten
  • VIP

Geplaatst op 22 juni 2007 - 19:46

indien je met a AB bedoelt neem je toch gwn pythagoras ('k heb je berekeningen wel niet nagelezen)
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.

#3

dirkwb

    dirkwb


  • >1k berichten
  • 4172 berichten
  • Moderator

Geplaatst op 22 juni 2007 - 20:22

Via de oppervlaktes: LaTeX

LaTeX

maar via de cosinus is de zijde veel makkelijker te berekenen, de zijde is LaTeX
Quitters never win and winners never quit.

#4

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 22 juni 2007 - 21:21

Verplaatst naar huiswerk & practica.
"Malgré moi, l'infini me tourmente." (Alfred de Musset)





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures