Springen naar inhoud

Functiereeksen


  • Log in om te kunnen reageren

#1

Scofield

    Scofield


  • >250 berichten
  • 355 berichten
  • Ervaren gebruiker

Geplaatst op 01 januari 2008 - 01:05

Hallo,

Zou iemand voor mij volgende begrippen kunnen uitleggen:

-positieve machtreeksen
-convergentiestraal
-(reŽel) analytisch
-negatieve machtreeksen
-z-transformatie

Ik heb hier en daar wat zitten zoeken, maar het staat overal wel wat te moeilijk uitgelegd.
Ik vraag geen zeer uitgebreide uitleg want in geval van bovenstaande begrippen zouden we nog een tijdje kunnen bezig zijn. Ik wil een beetje intuÔtief begrijpen wat bovenstaande begrippen willen zeggen.


Alvast bedankt

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

EvilBro

    EvilBro


  • >5k berichten
  • 6703 berichten
  • VIP

Geplaatst op 01 januari 2008 - 10:52

Tijd om eens zo'n gebouw te bezoeken met daarin papieren-internet en daar een boek over calculus op te zoeken?

#3

Scofield

    Scofield


  • >250 berichten
  • 355 berichten
  • Ervaren gebruiker

Geplaatst op 01 januari 2008 - 16:04

Dat heb ik al gedaan, maar het heeft niet veel opgeleverd.

#4

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 01 januari 2008 - 16:39

Dit is wel een erg vage vraagstelling. Bijna elk van die onderwerpen heeft een wikipedia-artikel waar een en ander al duidelijk wordt uitgelegd. Waarschijnlijk heb je in je eigen cursus definities gezien, het is handiger als je aangeeft wat je precies niet begrijpt.

Bijvoorbeeld: een reeks is positief als elk van de termen van de overeenkomstige rij, positief is. Dat is toch niet zo moeilijk? Als je hierbij nog weet wanneer we van een 'machtreeks' spreken, dan ben je er.
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#5

Scofield

    Scofield


  • >250 berichten
  • 355 berichten
  • Ervaren gebruiker

Geplaatst op 01 januari 2008 - 17:27

Ok, daar heb je indeerdaad gelijk in. Ik zal het een keer goed lezen en angeven waar ik vastzit.

#6

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 01 januari 2008 - 17:29

Dat lijkt me een goed idee. Misschien ga je sommige begrippen zelf begrijpen, voor andere vraag je dan wat uitleg.
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#7

Scofield

    Scofield


  • >250 berichten
  • 355 berichten
  • Ervaren gebruiker

Geplaatst op 01 januari 2008 - 19:27

Op het moment zit ik vast bij volgende stelling:

De positieve machtreeks omheen z0 met convergentiestraal R convergeert uniform op elk gesloten en begrensd deel K van de schijf {z element van C: |z-z0<R}.

Ik zie niet echt in waarom dit zo is?

#8

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 01 januari 2008 - 21:22

Het ligt er een beetje aan hoe je de convergentiestraal R gedefinieerd hebt, maar dit is net de 'betekenis' van R: het geeft een bovengrens op de waarden van z waarvoor de reeks nog (uniform) convergeert. Wordt de stelling bewezen? Als je het bewijs snapt, dan zie je wellicht ook in waarom het klopt (of toch waarom het moet kloppen...).
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#9

Scofield

    Scofield


  • >250 berichten
  • 355 berichten
  • Ervaren gebruiker

Geplaatst op 01 januari 2008 - 23:13

Ja, ik zie het nu. Het is een bewijs voor de uniforme convergentie in R zelf.

Ik had nog een vraag:
Hoe integreer je een functierij (of reeks)? Stel je hebt een functierij fn en je integreert hem. Is de integraal van n =1 gelijk aan de integraal van n=2, want anders zie ik niet hoe je de integratie definieert voor functierijen-en reeksen. Ik heb een voorschrift van een functie fn=
n≤x als 0<=x<=1/n
-n≤(x-2/n) als 1/n<=x<=2/n
0 als 2/n<=x<=1
Deze integraal is blijkbaar gelijk aan 1, maar als je dit bijv wilt uitrekenen met maple, hoe doe je dit dan?

Veranderd door Scofield, 01 januari 2008 - 23:15


#10

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 02 januari 2008 - 10:45

De integraal van n = 1 gelijk aan die van n = 2? In dit geval wel, maar in het algemeen niet.
Hier wel, want zoals je zelf zegt is de integraal (altijd, onafhankelijk van n), gelijk aan 1!

Uitrekenen is eigenlijk eenvoudig, kan met Maple maar ook gewoon met de hand...

LaTeX
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#11

Scofield

    Scofield


  • >250 berichten
  • 355 berichten
  • Ervaren gebruiker

Geplaatst op 02 januari 2008 - 16:07

maar als je er niet mag vanuit gaan dat de integraal van n=1 gelijk is aan n=2, hoe integreer je dan een functierij ?
Het is misschien niet zo moeilijk maar hoe doe je dit dan? Kun je dit laten zien ahs enkele voorbeeldjes?

#12

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 02 januari 2008 - 16:10

Je doet het precies zoals in het voorbeeld dat ik net heb uitgewerkt.
In het algemeen kan dit afhangen van n, hier blijkt dat niet zo te zijn.

Begrijp je de integratie van de functierij die je zelf gaf?
Reken eventueel zelf de weggelaten tussenstappen na.
Of: laat het gewoon controleren door maple natuurlijk...
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#13

Scofield

    Scofield


  • >250 berichten
  • 355 berichten
  • Ervaren gebruiker

Geplaatst op 02 januari 2008 - 16:30

Dat is het net, ik snapte het voorbeeld dat ik gaf zelf niet. Ik zit vast bij het feit dat niets vast ligt. en het probleem bij bovenstaand voorbeeld is dat er twee variabelen (x en n) zijn waarover je integreert. Als je allebei variŽren, krijg je toch oneindig veel oplossingen. Dit is misschien een verkeerde redenering, maar met deze zit ik momenteel.

#14

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 02 januari 2008 - 16:35

Je integreert naar de variabele x, niet naar de parameter n.
Dat zie je toch in m'n uitwerking? De integralen hebben "dx".

Begrijp je de uitwerking van de integraal op het einde van dit bericht?
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#15

Scofield

    Scofield


  • >250 berichten
  • 355 berichten
  • Ervaren gebruiker

Geplaatst op 02 januari 2008 - 16:38

Ja ok, maar als je n laat variŽren, dan heb je toch geen eenduidig antwoord.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures