Springen naar inhoud

[Wiskunde] Huistaak wiskunde


  • Log in om te kunnen reageren

#1

ACMilan

    ACMilan


  • >100 berichten
  • 136 berichten
  • Ervaren gebruiker

Geplaatst op 19 januari 2008 - 19:22

Weet iemand hoe je hieraan kan beginnen ?

Voor welke positieve a heeft 1/tan2x + tanx = a/x geen reeŽle oplossing ?

Het antwoord is a is strik groter als 0 en kleiner of gelijk aan 1/2 maar ik geraak er zelf niet uit.

PS. Je mag geen Bgtan gebruiken

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

lucca

    lucca


  • >250 berichten
  • 758 berichten
  • Ervaren gebruiker

Geplaatst op 19 januari 2008 - 20:03

elimineer a van de rest, dan moet het het geen probleem zijn

LaTeX

#3

ACMilan

    ACMilan


  • >100 berichten
  • 136 berichten
  • Ervaren gebruiker

Geplaatst op 19 januari 2008 - 20:07

elimineer a van de rest, dan moet het het geen probleem zijn

LaTeX

Eigelijk was dat net het punt waar ik vast zat, al had ik het wel anders opgeschreven.
Mijn redenering lag namelijk zo : a bestaat niet waar tan x niet bestaat, maar dit is alleen bij pi/2 + kpi maar dan kan ik nooit een interval a = ]0; 0.5] bekomen

EDIT : Ps. het is tan2x en niet tan≤x

Veranderd door ACMilan, 19 januari 2008 - 20:10


#4

lucca

    lucca


  • >250 berichten
  • 758 berichten
  • Ervaren gebruiker

Geplaatst op 19 januari 2008 - 20:20

excuses,

LaTeX

waar a geen reŽele uitkomst kent, hoort zeker wťl het getal 0. (deel 0 maar eens door 0)

daarbij geef ik je denkwijze volkomen gelijk, ik denk zelfs dat de uitkomst 1/2 pi behoort te zijn en niet 1/2.

ga maar eens na voor x = 1/4 pi ....

#5

ACMilan

    ACMilan


  • >100 berichten
  • 136 berichten
  • Ervaren gebruiker

Geplaatst op 19 januari 2008 - 20:25

excuses,

LaTeX



waar a geen reŽele uitkomst kent, hoort zeker wťl het getal 0. (deel 0 maar eens door 0)

daarbij geef ik je denkwijze volkomen gelijk, ik denk zelfs dat de uitkomst 1/2 pi behoort te zijn en niet 1/2.

ga maar eens na voor x = 1/4 pi ....

Je hebt inderdaad gelijk met een 0 in de noemer te gaan zetten dat je ook een n.g. getalt bekomt waardoor de oplossing ook niet reeŽl is maar hoe is dat dan met dit geval ?
Want je hebt ook nog altijd x tanx dat dan gelijk is aan o, of is het geheel niet gedefinieerd als een term uit het geheel n.g. is ?

Mijn boek zegt dat a ligt tussen 0 en 1/2, het kan ook zijn dat hij de pi weglaat(zoals wel meer gebeurt). Maar ik begrijp nog altijd niet hoe je zo een interval kan bekomen ?

EDIT : Grafisch komt het er toch op neer op het minimum van de grafiek te bepalen, boven de x-as te verstaan?

Veranderd door ACMilan, 19 januari 2008 - 20:30


#6

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 19 januari 2008 - 20:35

Probeer door te vereenvoudigen het volgende aan te tonen:

LaTeX

Misschien kan je hiermee wel verder?
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#7

ACMilan

    ACMilan


  • >100 berichten
  • 136 berichten
  • Ervaren gebruiker

Geplaatst op 19 januari 2008 - 20:49

Probeer door te vereenvoudigen het volgende aan te tonen:

LaTeX



Misschien kan je hiermee wel verder?


Spijtig genoeg niet, het probleem ligt net daar denk ik, in het bepalen van a.

Bij het omvormen heb ik denk ik ook een fout gemaakt denk ik.
Ik kon de opgave herleiden naar

1+tan≤x
-----------
2 tan x

1 + tan≤ x = 1/cos≤x

Dan toepassing van de definitie van de tangens

1/ cos≤x
------------
2(sinx/cosx)

Dat schrijf ik dan als volgt op

1 2cos x
---------------------
cos≤x sinx

Dan deel ik de cosinussen weg en krijg ik dus de verdubbelingsformule van de sinus, maar die 2 blijft toch in de teller ?

Sorry voor al de vragen maar het is al een paar maanden geleden dat ik dit nog heb bezien.

Veranderd door ACMilan, 19 januari 2008 - 20:50


#8

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 19 januari 2008 - 20:52

Je begint inderdaad goed, namelijk:

LaTeX

Dan herschrijven, die 2 hoort niet in de teller maar in de noemer:

LaTeX
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#9

ACMilan

    ACMilan


  • >100 berichten
  • 136 berichten
  • Ervaren gebruiker

Geplaatst op 19 januari 2008 - 20:56

Je begint inderdaad goed, namelijk:

LaTeX



Dan herschrijven, die 2 hoort niet in de teller maar in de noemer:

LaTeX


Ah oke, bedankt, maar hoe moet je dan a gaan bepalen ?
Met gewone getallen deden we altijd als volgt.

Simpel voorbeeld :

sin x = 1 sin (pi/2) = 0

x = pi/2 + k 2 pi met k element van Z

Maar ik weet niet hoe ik het nu moet doen aangezien
1) sin2x in de noemer staat
2) wat doe ik met die x ?

Of is dit allemaal niet nodig om a te bepalen ?

#10

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 19 januari 2008 - 20:57

De vraag is voor welke positieve a de oorspronkelijke vergelijking (geen) oplossingen heeft.
Die vraag is nu herleid naar: welke positieve waarden neemt de functie f(x) = x/sin(2x) aan?

Het kan zijn dat je dit op een andere manier moet oplossen, heb je zo'n oefening al gemaakt?
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#11

ACMilan

    ACMilan


  • >100 berichten
  • 136 berichten
  • Ervaren gebruiker

Geplaatst op 19 januari 2008 - 21:03

De vraag is voor welke positieve a de oorspronkelijke vergelijking (geen) oplossingen heeft.
Die vraag is nu herleid naar: welke positieve waarden neemt de functie f(x) = x/sin(2x) aan?

Het kan zijn dat je dit op een andere manier moet oplossen, heb je zo'n oefening al gemaakt?

Dus dan moet ik eigelijk de kleinst positieve waarde zoeken die f(x) heeft ?
Maar hoe kan ik dit doen zonder er limieten bij te betrekken ?

Sorry voor al de vragen, normaal heb ik niet vaak problemen met wiskunde maar deze vraag is blijkbaar mijn zwart beest.

#12

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 19 januari 2008 - 21:05

Weet je (standaardlimiet, zonder uit te rekenen) dat sin(x)/x naar 1 gaat voor x naar 0?
Dan gaat x/sin(2x) = 1/2.(2x)/sin(2x) naar 1/2 omdat het vetgedrukte ook naar 1 gaat.
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#13

ACMilan

    ACMilan


  • >100 berichten
  • 136 berichten
  • Ervaren gebruiker

Geplaatst op 19 januari 2008 - 21:08

Weet je (standaardlimiet, zonder uit te rekenen) dat sin(x)/x naar 1 gaat voor x naar 0?
Dan gaat x/sin(2x) = 1/2.(2x)/sin(2x) naar 1/2 omdat het vetgedrukte ook naar 1 gaat.

Dat is dan inderdaad een goede oplossing, ik zal het eens bekijken al weet ik niet of mijn leraar gaat geloven dat ik dit helemaal zelf heb gedaan.
Is er misschien omdat laatste anders uit te rekenen ?

#14

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 19 januari 2008 - 21:12

Ik weet ook niet of dit wel de gezochte aanpak is, vandaar dat ik me afvroeg of je nog geen gelijkaardige vragen hebt moeten oplossen? Zo kan je er in elk geval geraken, maar misschien is er iets eenvoudigers dat ik (nog) niet direct zie...
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

#15

ACMilan

    ACMilan


  • >100 berichten
  • 136 berichten
  • Ervaren gebruiker

Geplaatst op 19 januari 2008 - 21:14

Ik weet ook niet of dit wel de gezochte aanpak is, vandaar dat ik me afvroeg of je nog geen gelijkaardige vragen hebt moeten oplossen? Zo kan je er in elk geval geraken, maar misschien is er iets eenvoudigers dat ik (nog) niet direct zie...

Het hoort bij de moeilijkere vragen (en daar hoort hij inderdaad).
Ik doe dit wel voor een vriendin,(zij geraakte er niet uit en ik ben meestal handig met wiskunde, behalve nu dan) dus ik weet niet of zij al gelijkaardige dingen heeft gezien.
Maar in ieder geval, strikt gezien is het niet fout en mag het dus ook niet fout gerekend worden.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures