Springen naar inhoud

Traagheidsmoment stang


  • Log in om te kunnen reageren

#1

Redbok

    Redbok


  • >100 berichten
  • 155 berichten
  • Ervaren gebruiker

Geplaatst op 09 april 2008 - 21:20

Hoe bepaal ik het traagheidsmoment tov het zwaartepunt van deze stang?
De lengtes van de twee delen zijn gegeven.
staaf.JPG

Veranderd door Redbok, 09 april 2008 - 21:21


Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

jhnbk

    jhnbk


  • >5k berichten
  • 6905 berichten
  • VIP

Geplaatst op 09 april 2008 - 21:22

Kan je meer info geven?
De lengte van de benen bv.

LaTeX
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.

#3

Redbok

    Redbok


  • >100 berichten
  • 155 berichten
  • Ervaren gebruiker

Geplaatst op 09 april 2008 - 21:24

Stel lengte onderste been a1, lengte bovenste been a7.

#4

jhnbk

    jhnbk


  • >5k berichten
  • 6905 berichten
  • VIP

Geplaatst op 09 april 2008 - 21:35

Je kan via integratie werken, maar het handiger om het zo te doen
LaTeX en dus over de delen te splitsen. LaTeX is het zwaartepunt van het deel
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.

#5

Redbok

    Redbok


  • >100 berichten
  • 155 berichten
  • Ervaren gebruiker

Geplaatst op 09 april 2008 - 21:49

Ik weet niet goed wat jij berekent, maar ik ben op zoek naar een traagheidsmoment.

Een traagheidsmoment heeft eenheden kg*m^2.

#6

oktagon

    oktagon


  • >1k berichten
  • 4502 berichten
  • Verbannen

Geplaatst op 10 april 2008 - 15:16

Ik weet niet goed wat jij berekent, maar ik ben op zoek naar een traagheidsmoment.

Een traagheidsmoment heeft eenheden kg*m^2.



Kdocht: mm4 of cm4 of m4 ! :D Maar kan het mis hebben!

#7

Morzon

    Morzon


  • >1k berichten
  • 2002 berichten
  • Ervaren gebruiker

Geplaatst op 10 april 2008 - 15:31

Nee. kgm^2 klopt wel.

Ik weet niet goed wat jij berekent, maar ik ben op zoek naar een traagheidsmoment.

Een traagheidsmoment heeft eenheden kg*m^2.

Je hebt een massadichtheid van LaTeX

Veranderd door Morzon, 10 april 2008 - 15:31

I was born not knowing and have only a little time to change that here and there.

#8

Sjakko

    Sjakko


  • >1k berichten
  • 1007 berichten
  • Ervaren gebruiker

Geplaatst op 10 april 2008 - 15:55

Kdocht: mm4 of cm4 of m4 ! :D Maar kan het mis hebben!

Jij hebt het over het oppervlaktetraagheidsmoment welke je nodig hebt bij sterkteberekeningen. Redbok doelt op het massatraagheidsmoment welke je gebruikt bij dynamicaberekeningen.

Ik vind de vraag overigens nogal vaag want je kunt oneindig veel assen door het zwaartepunt trekken. Mij is niet duidelijk welke as wordt bedoeld.

#9

Redbok

    Redbok


  • >100 berichten
  • 155 berichten
  • Ervaren gebruiker

Geplaatst op 10 april 2008 - 19:04

Ik zal m'n vraag wat meer toelichten.

In de tekening zie je een staaf die bestaat uit twee delen met een vaste hoke ertussen. Het massacentrum van de volledige staaf zal dus niet opde staaf liggen.

Veronderstel voor het onderste deel een lengte a1 en voor het bovenste deel een lengte a7. Veronderstel eveneens een bepaalde massa per lengteeenheid.

Wat is nu het traagheidsmoment rond een as door het zwaartecentrum loodrecht uit het vlak?

#10

Sjakko

    Sjakko


  • >1k berichten
  • 1007 berichten
  • Ervaren gebruiker

Geplaatst op 11 april 2008 - 13:46

Geplaatste afbeelding
De rode stip is het zwaartepunt van het geheel. De bruine lijn is de verbindingslijn tussen de middens van de staven.

Ik ga uit van dunne homogene staven. De ene staaf heeft lengte a en de andere staaf heeft lengte b. Het zwaartepunt van elk van de staven ligt in het midden van de betreffende staaf. Trek nu een lijn tussen de middens van de staven. Deze lijn heeft een lengte c. Ergens op deze lijn ligt het zwaartepunt van het geheel. Eerst c maar eens uitrekenen met behulp van de cosinusregel:

LaTeX , uitwerken:

LaTeX

Je hebt nu 2 puntmassa's waarvan je het zwaartepunt moet bepalen. Dat lukt ongetwijfeld, bijvoorbeeld met momentenevenwicht rond het zwaartepunt (d.w.z. bd=ae). De lengte van de staven is meteen een maat voor de massa's. Ik kom op:

LaTeX
LaTeX

Voor het traagheidsmoment van een dunne staaf rond een as loodrecht op de staaf en door zijn midden geldt:
LaTeX

De stelling van Steiner zegt dan dat voor het traagheidsmoment van een staaf rond het gezamelijke zwaartepunt geldt:

LaTeX
waarbij k de afstand tussen het zwaartepunt van de betreffende staaf en het gezamelijke zwaartepunt is. Dit levert op

LaTeX
LaTeX

Voor het totale massatraagheidsmoment geldt LaTeX

Voor de massa van elke staaf geldt gewoon massa=(massa per lengte-eenheid)*lengte. Foutjes voorbehouden.

#11

Redbok

    Redbok


  • >100 berichten
  • 155 berichten
  • Ervaren gebruiker

Geplaatst op 13 april 2008 - 22:06

Bedankt!

Stel dat het massacentrum geen vast punt is, mag je dan de stelling van Steiner toepassen?

#12

Sjakko

    Sjakko


  • >1k berichten
  • 1007 berichten
  • Ervaren gebruiker

Geplaatst op 13 april 2008 - 22:56

Stel dat het massacentrum geen vast punt is, mag je dan de stelling van Steiner toepassen?

Sorry, ik begrijp je vraag niet. Wat bedoel je met een "vast punt" en doel je op het massacentrum van het geheel of het massacentrum van 1 van de staven?

De stelling van Steiner is in elk geval bedoeld om het traagheidsmoment van een lichaam rond een willekeurige as parallell aan een as door het massamiddelpunt waaromheen het traagheidsmoment bekend is, te berekenen. Zolang je daaraan voldoet, mag hij gebruikt worden. De stelling is trouwens ook bekend onder de naam Parallel axis theorem. Op de NLse wikipedia staat trouwens dat het lichaam homogeen moet zijn, maar volgens mij is dat niet zo.

#13

rodeo.be

    rodeo.be


  • >250 berichten
  • 647 berichten
  • Ervaren gebruiker

Geplaatst op 13 april 2008 - 23:25

Mm, die uitwerking van Sjakko ziet er mij toch maar raar uit. Hij vergeet nog een stap; de I_x en I_y die hij berekent van de verschillende balkjes zijn tov de traagheidsassen van dat balkje. Die verschillen tussen beide profielen, je moet eerst de I_x en I_y roteren (met invoering van I_yx). Dan pas kan je ze optellen.
???

#14

Sjakko

    Sjakko


  • >1k berichten
  • 1007 berichten
  • Ervaren gebruiker

Geplaatst op 13 april 2008 - 23:54

Mm, die uitwerking van Sjakko ziet er mij toch maar raar uit. Hij vergeet nog een stap; de I_x en I_y die hij berekent van de verschillende balkjes zijn tov de traagheidsassen van dat balkje. Die verschillen tussen beide profielen, je moet eerst de I_x en I_y roteren (met invoering van I_yx). Dan pas kan je ze optellen.

Je bedoelt LaTeX en LaTeX ? Die zijn beide berekend rond de as die loodrecht op mijn tekening staat en door het gezamelijke zwaartepunt (=het rode stipje) gaat. Die bruine lijn staat er zuiver om de plek van het gezamenlijke zwaartepunt te kunnen berekenen.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures