Springen naar inhoud

Dwarskrachten


  • Log in om te kunnen reageren

#1

joshie

    joshie


  • 0 - 25 berichten
  • 5 berichten
  • Gebruiker

Geplaatst op 17 augustus 2008 - 10:53

Hoi,

Kan iemand mij de volgende opgave uitleggen?

Untitled_1.jpg (figuur: een krachtdichtheid w(z) op een staaf)
de lente van de as is L
w(z) miximaal bij 1/2L met w(1/2L)=k

opgave: bepaal de grootte van de dwarskracht V(z) voor z tussen 0 en L

antwoord:
Untitled_3.jpg

Groetjes Josje

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

dirkwb

    dirkwb


  • >1k berichten
  • 4172 berichten
  • Moderator

Geplaatst op 17 augustus 2008 - 11:03

Ik heb nog nooit gehoord van een krachtdichtheid, bedoel je een verdeelde belasting? Als je de dwarskracht V(x) wil bekijken dan voer je een snede uit op plaats x en kijk je naar LaTeX

Veranderd door dirkwb, 17 augustus 2008 - 11:04

Quitters never win and winners never quit.

#3

jhnbk

    jhnbk


  • >5k berichten
  • 6905 berichten
  • VIP

Geplaatst op 17 augustus 2008 - 12:58

In dit geval is het vrij simpel. Wat weet je over de relatie tussen verdeelde last en dwarskracht?
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.

#4

joshie

    joshie


  • 0 - 25 berichten
  • 5 berichten
  • Gebruiker

Geplaatst op 17 augustus 2008 - 13:26

met krachtdichtheid wordt waarschijnlijk wel die verdeelde belasting bedoeld ja.

Over de relatie tussen de belasting en de dwarskracht weet je alleen dat de dwarskracht aan het begin omlaag gericht zal zijn, en naar mate de belasting toeneemt op een gegeven moment omhoog gericht zal zijn. Maar hoe ze dan bij het antwoord komen....

#5

oktagon

    oktagon


  • >1k berichten
  • 4502 berichten
  • Verbannen

Geplaatst op 17 augustus 2008 - 14:05

Wat vragen van een Alter Haase:

Is de figuur een staaffiguur of een massief lichaam.

Treden de aangegeven krachten op bij de opleggingen A en B en wat voor opl.zijn dat?

Wat stelt w(x) voor,een kracht,een weerstandsmoment?

Krachtdichtheid?


Hoi,

Kan iemand mij de volgende opgave uitleggen?

Untitled_1.jpg (figuur: een krachtdichtheid w(z) op een staaf)
de lente van de as is L
w(z) miximaal bij 1/2L met w(1/2L)=k

opgave: bepaal de grootte van de dwarskracht V(z) voor z tussen 0 en L (waar zijn die te zien?)
antwoord:
Untitled_3.jpg

Groetjes Josje


#6

joshie

    joshie


  • 0 - 25 berichten
  • 5 berichten
  • Gebruiker

Geplaatst op 17 augustus 2008 - 14:21

de figuur is een balk die door de aangegeven belasting W(z) belast wordt. Op de punten A en B wordt de balk ondersteund en ontstaan dus reactie krachten. Met krachtdichtheid denk ik dat de verdeelde belasting W(z) bedoeld wordt, maar dit is de gehele opgave dus meer weet ik ook niet.
Bij de uiteindes wordt trouwens geen moment geleverd.

Ik snap dat k/L*z^2 de schuine zijde van de belasting is en dat deze afhankelijk is van z. Tussen 0 en 1/2L heeft dit een tegengestelde kracht vanuit A en dat is de 1/4L*K. Met behulp van de som van krachten komt dit dus op V(z) uit.

Maar bij die 2e snap ik dan niet hoe ze aan die 2kz en die 3/4Lk komen...

#7

jhnbk

    jhnbk


  • >5k berichten
  • 6905 berichten
  • VIP

Geplaatst op 17 augustus 2008 - 16:13

Laat eens zien wat je voor het 2de deel zou doen.
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.

#8

oktagon

    oktagon


  • >1k berichten
  • 4502 berichten
  • Verbannen

Geplaatst op 17 augustus 2008 - 17:46

Op je prent wordt een MA en MB aangegeven,dat houdt een vorm van inklemming is.

En die zal dan wel veroorzaakt worden door de driehoeksbelasting van totaal w*Z/2 en oplegreacties w*Z/4 elk.

Je krijgt dan een start in je D-lijn van een positieve w*Z/4 met een parabolisch verloop naar het midden en vandaar een spiegelbeeld parab.verloop naar het eind tot dus neg.w*Z/4

Dus op 1/4 Z van links is de dwarskracht w*Z/4 - w*Z/(4*4) = w*Z*3/16,als ik me niet vergis!

Zuh hebben de opgaaf heel ingewikkeld gemaakt,had eenvoudiger gekund,door direct op te geven dat de totale overspanning L (mtr) was en de belasting oplopend van 0 tot z/mtr bij de helft en daarna aflopend!

#9

oktagon

    oktagon


  • >1k berichten
  • 4502 berichten
  • Verbannen

Geplaatst op 17 augustus 2008 - 20:52

Aanvullend:
Een D lijn voor gelijkm.belasting (rechtl.verloop) en een voor driehoekige belasting(parab.verloop),bij de laatste steeds opp.krachtendriehoeken aftrekken van de oplegreactie voor het linkerdeel en dat in spiegelbeeld,rekening houden met pos.en neg.krachten,voor het rechterdeel van de balk!





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures