Springen naar inhoud

Zwaartepunt 3d en 2d


  • Log in om te kunnen reageren

#1

bbusterr

    bbusterr


  • >25 berichten
  • 47 berichten
  • Gebruiker

Geplaatst op 30 november 2008 - 14:41

Hoi,

Ik heb even een snel vraagje...
Ik wil een aantal zwaartepunten berekenen.
Op zich niet moeilijk, maar ik ben niet helemaal zeker over de locatie van een zwaartepunt in 3D vergeleken met 2D.

Is de positie van het zwaartepunt van een 3-dimensionaal object (bijvoorbeeld een conus) hetzelfde als dat van zijn 2D projectie (dus van bijvoorbeeld een gelijkbenige driehoek)? (in longitidunale richting)
Met als belangrijk gegeven dat het zwaartepunt in ieder geval op de longitudinale as ligt van het object. (Beetje moelijk uitleggen, maar je kan zeg maar het object maken op een draaibank, dus het bovenaanzicht is puntsymmetrisch in alle richtingen. Dus bijvoorbeeld een conus)

Aan de ene kant lijkt het me logisch, maar aan de andere kant lijkt het juist logisch dat de zwaartepunten niet op dezelfde posities zitten.
Page intentionally left blank

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Jan van de Velde

    Jan van de Velde


  • >5k berichten
  • 44835 berichten
  • Moderator

Geplaatst op 30 november 2008 - 17:10

gedachtenexperiment:

Ik denk mij een driehoek in als opgebouwd uit allemaal balkjes van 1 cm hoogte en 1 cm dikte. Van de punt naar de basis worden mijn balkjes steeds langer.

ik neem een balkje van 2 (x1x1) cm = 2 cm³ eruit, en een balkje van 6 (x1x1) cm = 6 cm³, hang die aan weerszijden van een balans, en bepaal waar het zwaartepunt komt.(waar moet ik het draaipunt van mijn balans leggen voor een evenwicht....)

Nu denk ik mij een conus in als een piramide van vierkante plakjes van steeds 1 cm hoog, en even lang als breed.
Ik gebruik dezelfde projectie. Ik pak weer mijn plakje van 2 cm lengte, maar da's nu ook 2 cm breed, dus volume wordt 2x2x1 = 4 cm³. Het plakje van 6 cm lang wordt nu ook 6 cm breed, volume 6x6x1 = 36 cm³.

Ik hang ze weer aan de balans. Komt dat steunpunt op dezelfde plaats?
ALS WIJ JE GEHOLPEN HEBBEN....
help ons dan eiwitten vouwen, en help mee ziekten als kanker en zo te bestrijden in de vrije tijd van je chip...
http://www.wetenscha...showtopic=59270

#3

bbusterr

    bbusterr


  • >25 berichten
  • 47 berichten
  • Gebruiker

Geplaatst op 30 november 2008 - 17:51

LaTeX
LaTeX
(Als ik geen rekenfoutjes heb gemaakt :D)
Niet zo vreemd eigenlijk...

Maar goed, beter het zekere voor het onzekere nemen...

Bedankt voor de hulp in ieder geval
Page intentionally left blank

#4

oktagon

    oktagon


  • >1k berichten
  • 4502 berichten
  • Verbannen

Geplaatst op 30 november 2008 - 18:50

Je kunt ook een projectie maken van een conus met bovenaanzicht een cirkel.

Ook kun je als variant van Jan's oplossing plakjes snijden,welke alle het zelfde middelpunt hebben en daaruit constateren dat het zwaartepunt van de conus op de verzamelde middelpunten-lijn van die conus ligt op 0.25 van de conushoogte,ook in een scheve positie.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures