Springen naar inhoud

Methode om pi te berekenen


  • Log in om te kunnen reageren

#1

aaargh

    aaargh


  • >1k berichten
  • 1279 berichten
  • Ervaren gebruiker

Geplaatst op 17 mei 2005 - 19:01

Ik heb een methode gevonden om pi te berekenen zonder oneindige integralen of sommaties. Hier komt mijn wonderformule:

;) = [int -1->1] :shock: 1-x^2

Is pi dan toch een rational getal?

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Math

    Math


  • >1k berichten
  • 1460 berichten
  • VIP

Geplaatst op 17 mei 2005 - 19:13

Je bedoelt toch deze integraal, niet?
Geplaatste afbeelding
Daar komt toch gewoon :shock:/2 uit?
<i>Iets heel precies uitleggen roept meestal extra vragen op</i>

#3

TD

    TD


  • >5k berichten
  • 24049 berichten
  • VIP

Geplaatst op 17 mei 2005 - 19:14

Uiteraard is pi geen rationaal getal en zo wonderlijk lijkt die formule nu ook weer niet.
Probeer die integraal maar eens uit te rekenen, hoogstwaarschijnlijk komen er goniometrische functies uit en daar zit pi natuurlijk ingebakken.

De bepaalde integraal die jij geeft lijkt me trouwens pi/2 als uitkomst te hebben, en niet pi.

Een primieve ervoor is ASIN(x)/2 + x*sqrt(1-xČ)/2

Edit Math: primitieve is (zoals TD al goed aangaf)
Geplaatste afbeelding

#4

aaargh

    aaargh


  • >1k berichten
  • 1279 berichten
  • Ervaren gebruiker

Geplaatst op 18 mei 2005 - 13:40

OK het is pi over 2, srry. Dit is de eerste formule die geen integraal van -oneindig tot +oneindig gaat die ik ken.

#5

Rogier

    Rogier


  • >5k berichten
  • 5679 berichten
  • VIP

Geplaatst op 18 mei 2005 - 14:16

Dit is de eerste formule die geen integraal van -oneindig tot +oneindig gaat die ik ken.

Uh, wacht dat je van:

Geplaatste afbeelding

:wink:


Of anders deze: log(i:shock:-1) = log(i2/i) = ;)
In theory, there's no difference between theory and practice. In practice, there is.

#6


  • Gast

Geplaatst op 04 juni 2005 - 10:23

Ik heb een methode gevonden om pi te berekenen zonder oneindige integralen of sommaties. Hier komt mijn wonderformule:

:shock: =   [int -1->1] ;) 1-x^2

Is pi dan toch een rational getal?

Pi is zeker geen rationaal getal. Het is zelfs een transcendent getal, waarmee niets esoterisch wordt bedoeld. Het betekent alleen dat pi geen oplossing kan zijn van een vergelijking met gehele machten. Dit bijvoorbeeld in tegenstelling tot de vierkantswortel van 2. Pythagoras wist al dat dit geen rationaal getal is (een getal dat je als breuk kan schrijven), maar de vierkantswortel van 2 is geen transcendent getal. Het is bijvoorbeeld de oplossing van x^2=2.

#7


  • Gast

Geplaatst op 04 juni 2005 - 10:26

Ik heb een methode gevonden om pi te berekenen zonder oneindige integralen of sommaties. Hier komt mijn wonderformule:

:shock: =   [int -1->1] ;) 1-x^2

Is pi dan toch een rational getal?

pi is een zeer speciaal getal en duikt overal op waar je het niet verwacht.
Enkele voorbeelden:

De kans dat je in een willekeurig kaartspel een harten trekt, is pi gedeeld door 4 keer pi.

De Franse wiskundige Buffon heeft een methode gevonden om op basis van kansrekening de waarde van pi te meten. Je trekt een aantal evenwijdige lijnen op de vloer en je gooit een naald. De afstand tussen de lijnen en de lengte van de naald moeten een bepaalde verhouding tot elkaar hebben. je gooit dan de naald een heel groot aantal keren op de vloer. Door te tellen hoe dikwijls de naald een van de lijnen raakt of er tussen ligt, kun je de waarde van pi berekenen.

#8

Rogier

    Rogier


  • >5k berichten
  • 5679 berichten
  • VIP

Geplaatst op 04 juni 2005 - 10:32

De kans dat je in een willekeurig kaartspel een harten trekt, is pi gedeeld door 4 keer pi.

Ja, apart he, vreemd genoeg werkt dat ook met e, [wortel]2 en zelfs met i :shock:
In theory, there's no difference between theory and practice. In practice, there is.

#9

moČ

    moČ


  • >250 berichten
  • 436 berichten
  • Ervaren gebruiker

Geplaatst op 04 juni 2005 - 13:02

De kans dat je in een willekeurig kaartspel een harten trekt, is pi gedeeld door 4 keer pi.


wat is dat voor iets, pi gedeeld door 4 keer pi is gwn 1/4. Ik kan ook zeggen dat de kans dan is phi gedeeld door 4 keer phi of ....


Of begrijp ik het verkeerd?

#10

Math

    Math


  • >1k berichten
  • 1460 berichten
  • VIP

Geplaatst op 04 juni 2005 - 13:05

Of begrijp ik het verkeerd?

Bedoeld wordt :shock: 2 / 4
<i>Iets heel precies uitleggen roept meestal extra vragen op</i>

#11

moČ

    moČ


  • >250 berichten
  • 436 berichten
  • Ervaren gebruiker

Geplaatst op 04 juni 2005 - 16:47

piČ/4 , kun je op veel andere betere manieren zeggen dan pi gedeeld door 4 pi :shock:

#12

Math

    Math


  • >1k berichten
  • 1460 berichten
  • VIP

Geplaatst op 04 juni 2005 - 16:53

piČ/4 , kun je op veel andere betere manieren zeggen dan pi gedeeld door 4 pi :shock:

Klopt, maar dat neemt niet weg dat de inbreng van de gast meer bijdroeg aan de topic dan de posts die erna kwamen.
In feite is niets mis met de manier hoe hij/zij het opschreef, bij de interpretatie ging het mis...
<i>Iets heel precies uitleggen roept meestal extra vragen op</i>

#13

moČ

    moČ


  • >250 berichten
  • 436 berichten
  • Ervaren gebruiker

Geplaatst op 04 juni 2005 - 17:00

pi gedeeld door 4 keer pi, die 4 hoort bij "keer", want (pi/4) keer pi zeg ge toch niet , dus niks mis aan mijn interpretatie:)

Edit Math:
Ik schrijf het even uit: ;) / 4 * ;) .
Volgorde van rekenen is van links naar rechts.
Eerst :shock: / 4, dan dit antwoord * :?:
Antwoord = :?: 2/4

#14

Rogier

    Rogier


  • >5k berichten
  • 5679 berichten
  • VIP

Geplaatst op 04 juni 2005 - 17:28

Oh maar dan is het fout, want de kans dat je in een willekeurig kaartspel een harten trekt is gewoon 1/4, niet ;)2/4.

(Daarom dacht ik ook dat je ;)/(4pi.gif) bedoelde :shock:)
In theory, there's no difference between theory and practice. In practice, there is.

#15

Math

    Math


  • >1k berichten
  • 1460 berichten
  • VIP

Geplaatst op 04 juni 2005 - 17:36

Oh maar dan is het fout, want de kans dat je in een willekeurig kaartspel een harten trekt is gewoon 1/4, niet ;)2/4.

(Daarom dacht ik ook dat je ;)/(4pi.gif) bedoelde :?:)

Uiteraard, harten is in een kaartenspel voor een kwart vertegenwoordigd. Vandaar die 1/4.

De manier waarop de gast het vertelde was echter behoorlijk verwarrend. Hij haalt :shock: in feite voor niets erbij.

Het draagt dan ook niets aan de discussie bij. :wink:
<i>Iets heel precies uitleggen roept meestal extra vragen op</i>





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures