Springen naar inhoud

Momentenlijn


  • Log in om te kunnen reageren

#1

Twoine

    Twoine


  • 0 - 25 berichten
  • 13 berichten
  • Gebruiker

Geplaatst op 27 januari 2009 - 20:37

Hallo,

Ik zit met een probleem.

Gegeven:

Onderstaande situatie. (zie figuur)
Ligger op 3 steunpunten.
Op AB een verdeelde last van 68,61kN/m.
Op BC een verdeelde last van 36,57kN/m.

Gevraagd:

Momentenlijn opstellen.

Probleem:

De oplossing van dit probleem heb ik hier wel maar dit is opgelost met "De 3-momentenstelling". (De oplossing staat in de figuur hieronder.) Aangezien ik "de 3-momentenstelling" niet echt ken is mijn vraag heel simpel:

Hoe lossen jullie zulk probleem op? Ik heb al vanalles geprobeerd wat ik ooit heb gezien in de lessen sterkteleer maar niets lukt. Ik dacht eerst het hyperstatisch stelsel oplossen maar ook dan kom ik de uitkomsten niet uit?

Kan iemand mij helpen: Hoe stel ik de momentenlijn hiervan op?

Alvast bedankt!

Bijgevoegde afbeeldingen

  • Vraag_sterkteleer.jpg
  • Oplossing.jpg

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

oktagon

    oktagon


  • >1k berichten
  • 4502 berichten
  • Verbannen

Geplaatst op 27 januari 2009 - 21:57

Ik zie jouw verhaal en gaf net een oplossing bij een gelijksoortige topic (ligger op 3 steunpunten,st.onbepaalde ligger):

Stel de doorbuigingen veroorzaakt door de uitwendige belasting en dus zonder tussensteunpunt P (f1)
en
die door de vervangende puntlast (van het tussensteunpunt) gelijk,omdat de totale doorbuiging nul is (f2).

De doorbuiging (f1) op de plaats van het tijdelijk verwijderde tussensteunpunt te berekenen uit de optelsom van de deeldoorbuigingen van de verschillende lasten,

en die is gelijk aan de tegengestelde doorbuiging f2 door de vervangende puntlast.


Rest van het verhaal bij de desbetreffende topic!

#3

jhnbk

    jhnbk


  • >5k berichten
  • 6905 berichten
  • VIP

Geplaatst op 28 januari 2009 - 10:14

Kijk eens in dit topic bijvoorbeeld http://www.wetenscha...showtopic=92453. Aangezien het slechts 3 steunpunten betreft is cross of clapeyron ideaal.
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.

#4

Mazer

    Mazer


  • >25 berichten
  • 67 berichten
  • Ervaren gebruiker

Geplaatst op 23 mei 2011 - 19:06

hallo, ik zit met eenzelfde probleem als hierboven maar snap echter niet veel van de link die jhnbk gegeven heeft. om te beginnen heb ik problemen met de reactiekrachten in de punten A,B en C te bepalen.

mijn redenering om de krachten te bepalen is de verdeelde lasten als een puntkracht te laten inwerken en dan gelijkmatig verdelen naar de punten A,B en C.

dus voor A = (68,61*5)/2 = 171,525
voor C = (36,57*5)/2 = 91,425
voor B = A + C = 262,95

klopt dit?

Hieruit stel ik de reactiekrachtenlijn uit en dan integreer ik ze naar de momentenlijn...
dus mijn krachtenlijn en momentenlijn ziet er zo uit
F = 171,525 - 68,61*x ... + 262,95 + 68,61*(x-5) - 36,57*(x-5) ... +91,425

Veranderd door Mazer, 23 mei 2011 - 19:07


#5

jhnbk

    jhnbk


  • >5k berichten
  • 6905 berichten
  • VIP

Geplaatst op 24 mei 2011 - 16:37

mijn redenering om de krachten te bepalen is de verdeelde lasten als een puntkracht te laten inwerken en dan gelijkmatig verdelen naar de punten A,B en C.

Die redenering gaat niet op. Het is niet zo dat bij een ligger op 3 steunpunten en gelijk overspanningen de reacties 1/4, 1/2 en 1/4 van de totale last bedragen.

Maak eens een schema van jouw geval en post dan eens een stukje van de uitwerking zoals je ze zou moeten maken (ik neem aan dat je methoden hebt gezien op school?).
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.

#6

Plaus

    Plaus


  • >100 berichten
  • 232 berichten
  • Ervaren gebruiker

Geplaatst op 26 mei 2011 - 13:29

...
Kan iemand mij helpen: Hoe stel ik de momentenlijn hiervan op?
...


In de praktijk: technosoft/matrixframe of iets dergelijks, maar naar dat antwoord ben je natuurlijk niet op zoek ;-)

Er zijn volgens mij meerdere methoden om ernaar toe te werken en de methode van Clapeyron is er een van, maar daarvoor moet je bekend zijn met de energie principes van constructies. Ik vond het zelf erg pittig in ieder geval!

#7

Mazer

    Mazer


  • >25 berichten
  • 67 berichten
  • Ervaren gebruiker

Geplaatst op 27 mei 2011 - 09:10

Maak eens een schema van jouw geval en post dan eens een stukje van de uitwerking zoals je ze zou moeten maken (ik neem aan dat je methoden hebt gezien op school?).


Ik zal voortwerken met wat twoine hier als opgave heeft.

Aangezien mijn vorige methode verkeerd was, probeer ik nu een andere.

Om het maximaal moment in het middenste steunpunt te bepalen. Gebruik ik de formule (q*L)/8.
Maar als we dit van het linker en rechterdeel doen bekomen we een andere waarde
linkerdeel: 214,4Nm
rechterdeel: 114,3Nm

om dan in het midden te bepalen moet je het gemiddelde ervan bepalen?
(214,4+114,3)/2 = 164,3Nm

Aan de hand van dit moment kan ik de reactiekrachten bepalen (vb via linkerdeel Ra bepalen)
Mb (positief = wijzerzin) = 0 = 164,3 - 68,61*5*2,5 +Ra*5
Ra = 138,665

analoog te werk gaan voor Rc te berekenen en dan (som)Fy bepalen voor Rb.

Is deze methode correct? ik weet dat de gemiddelde waarde correct is, maar is dit toeval door het gemiddelde te nemen ofniet?

Veranderd door Mazer, 27 mei 2011 - 09:10


#8

jhnbk

    jhnbk


  • >5k berichten
  • 6905 berichten
  • VIP

Geplaatst op 27 mei 2011 - 10:49

Welke methode(n) heb je gezien in de lessen/boek/internet ?


Wat de drie momentenvergelijking betreft (zie ook hier):

LaTeX

dus:

LaTeX

Resultaat: LaTeX


EDIT: in dit geval is de uitkomst gelijk aan jouw benadering. Dit is echter niet altijd zo!
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.

#9

Mazer

    Mazer


  • >25 berichten
  • 67 berichten
  • Ervaren gebruiker

Geplaatst op 27 mei 2011 - 11:13

voor deze oefeningen hebben we niet echt een methode gezien, we hebben gelijkaarde oefeningen als deze behandeld in het vak beton (oefeningen op bepalen van wapening, beugels, etc ...), en de leraar schudde deze resultaten zo uit zijn mouw ... en vermelde de formule (q*L)/8.

Methodes als deze van clapeyron heb ik nog nooit van gehoord ...
nu, het kan geen kwaad om deze methode ook te leren.
Mijn enigste vraag is nu nog hoe je de waarden MAB en MBA berekend. want op Wikipedia berekenen ze het op een andere manier (rechterdeel van formule) en deze begrijp ik wel.

LaTeX


Dus nu hebben we het moment in B, kan ik dan via dezelfde manier als in mijn vorig bericht de reactiekrachten in A en C berekenen? Of is deze ook verkeerd?

#10

jhnbk

    jhnbk


  • >5k berichten
  • 6905 berichten
  • VIP

Geplaatst op 27 mei 2011 - 11:18

MAB zijn de aanvangsmomenten. Dat is nu net die ql/8. Hiervan bestaan tabellen.
Steunpunten kan je halen uit een een overspanning waarop dan de momenten werken.

Bijvoorbeeld voor de eerste overspanning:
HE: A+B = 5m . 68,61kN/m
RE: 5A = -164,34 kN + 5m . 68,61kN/m . 5m/ 2

Stelsel oplossen geeft dan:

A = 138,657 kN en B=204,393 kN (Beide opwaarts gericht)
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.

#11

Fast Eddy

    Fast Eddy


  • >25 berichten
  • 51 berichten
  • Ervaren gebruiker

Geplaatst op 27 mei 2011 - 18:19

Ik heb het als volgt gedaan:

Hoek verdraaiing in b =0 dus

-q.l3/24EI +Mb.l/3EI -ql3/24EI +Mb.l/3EI =0
Hieruit volgt ===> Mb = 164.34 kNm

Reactiekrachten:

Va = 1/2*68.61*5m - 164.34 / 5m = 138.657 kN
Vb(links)= 1/2*68.61*5m + 164.34 / 5m =204.393 kN
Vb (rechts) = 1/2*36.57*5m + 164.34 / 5m =124.293 kN
Vb (totaal) = 328.686 kN
Vc = 1/2*36.57* 5m - 164.34 / 5m = 58.557 kN

gr Eddy





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures