
Quantum Eraser for Three-Slit Interference

Naveed Ahmad Shah∗

Department of Physics, Jamia Millia Islamia, New Delhi-110025, India.

Tabish Qureshi†

Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi-110025, India.

It is well known that in a two-slit interference experiment, if the information, on which of the two paths
the particle followed, is stored in a quantum path detector, the interference is destroyed. However, in a
setup where this path information is “erased”, the interference can reappear. Such a setup is known as a
quantum eraser. A generalization of quantum eraser to a three-slit interference is theoretically analyzed.
It is shown that three complementary interference patterns can arise out of the quantum erasing process.

I. INTRODUCTION

The first double-slit interference experiment was per-
formed with light by Thomas Young in 1801, thereby
demonstrating the wave nature of light [1]. With the ad-
vent of quantum theory, it was realized that all quantum
particles, although considered indivisible, should show wave
nature. The first double-slit interference with electrons was
demonstrated by Jönsson [2].

A double-slit experiment with massive quantum particles
brings in a whole new concept, that of a particle interfering
with itself. That the interference of electrons in a double-slit
experiment involves an electron interfering with itself, and
not with other electrons, was conclusively demonstrated for
the first time by Tonomura et.al. [3].

Niels Bohr had stated that the wave aspect and the parti-
cle aspect are complementary, in the sense that if an experi-
ment clearly reveals the wave nature, it will completely hide
the particle aspect and vice-versa [4]. The complementarity
principle came under attack right after its inception when
Einstein proposed his famous recoiling slit experiment (see
e.g. [5]). Since then it has been a subject of debate re-
garding it’s various aspects and it’s validity too [6–8]. The
current understanding is that in the context of the two-path
interference experiment, either as a two-slit experiment, or
as a Mach-Zhender interferometer, the principle of com-
plementarity is quantitatively represented by the so-called
duality relation [9]

V2 +D2 ≤ 1, (1)

where D is a path distinguishability and V the visibility of
the interference pattern.

A very interesting consequence of this wave-particle du-
ality is the so-called quantum eraser [10, 11]. The idea of
quantum eraser is that if the which way information can, in
some way, be “erased”, the lost interference pattern can be
made to reappear. This phenomenon holds even when the
which-path information has been erased well after the parti-
cle has been registered on the screen. In such a scenario, the
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FIG. 1. Schematic diagram of a triple-slit interference experi-
ment. A quantum path-detector could be added to the setup,
which is capable of obtaining information on which slit the
particle passed through.

phenomenon is called “delayed-choice” quantum eraser. In
course of time, quantum eraser was experimentally demon-
strated for two-path interference in several different ways
[12–23]

The concept of complementarity should hold in multi-
path or multi-slit experiments too. It is an issue which
has been, and continues to be, a focus of much research
attention [24–32]. We pose the question, is quantum eraser
possible in multislit interference experiments too, and are
there any subtleties involved? We begin by looking at the
issue of quantum erasing in a 3-slit interference experiment,
which is the subject of this investigation.

II. THREE-SLIT INTERFERENCE AND
WAVE-PARTICLE DUALITY

Three slit interference is a bit more complex than its two-
slit counterpart, because it involves superposition of three
parts (see Fig. 1). A particle emerging from a triple-slit
may be assumed to have a form

|ψ〉 =
1√
3
|ψ1〉+

1√
3
|ψ2〉+

1√
3
|ψ3〉 (2)

where |ψ1〉, |ψ2〉, |ψ3〉 represent the state of the particle cor-
responding to it coming out of slit 1, 2 and 3, respectively.
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Sharpest interference is obtained when the amplitudes for
the three possibilities are equal, which is 1/

√
3 in our case.

By virtue of the Born rule, the three-slit interference can be
thought of as arising from three two-slit interferences [33].

If one were to introduce a quantum path-detector which
can tell which of the three slits the particle has gone
through, the state of the particle and the path-detector may
be written as

|ψ〉 =
1√
3
|ψ1〉|+〉+

1√
3
|ψ2〉|0〉+

1√
3
|ψ3〉|−〉 (3)

where |+〉, |0〉, |−〉 represent three orthonormal states of the
path-detector. If the path-detector is capable of gaining in-
formation on which slit the particle went through, by virtue
of von Neumann’s idea of a quantum measurement [34], the
combined state has to have the above form.

If the state of a particle, emerging from the triple slit,
is given by (2), the state of the particle at a time t when
it reaches the screen, would be different because it would
have undergone a time-evolution. Using quantum wave-
packets is a useful way to study the dynamics of quantum
particles (see e.g. [35]). In order do an accurate analysis of
the interference, we carry out a wave-packet analysis of the
particle. We assume that the states emerging from the three
slits are Gaussian wave-packets, centered at the respective
slits, with a width which is related to the width of the slits.
Assuming that the particle travels along the z-axis, and the
three slits are parallel to the y-axis, located at x = d , x = 0,
and x = −d . In order to keep the analysis simple, we ignore
the dynamics along the z- and y-axes. The dynamics along
the z-axis serves only to transport the particle from the slits
to the screen. We assume that the particle travels in the
z-direction with an average momentum p0, and a deBroglie
wavelength λ = h/p0 is associated with it. The particle
travels a distance D in a time t, and D = p0t/m. This
leads us to

λD = ht/m. (4)

The more interesting dynamics is in the x-direction where
the wave-packets are expected to expand and overlap, giving
rise to interference. One can go beyond this approximation
by treating the dynamics along the y- and z-direction more
rigorously [36]. However, for our purpose, this approximate
treatment suffices.

The states of the particle in front of the three slits, just
after it emerges, are assumed to be

〈x |ψ1〉 = C exp

(
−(x − d)2

ε2

)
〈x |ψ2〉 = C exp

(
−x2

ε2

)
〈x |ψ3〉 = C exp

(
−(x + d)2

ε2

)
, (5)

where C = (2/πε2)1/4. The state (2) can then be repre-
sented as

〈x |ψ〉 =
C√

3

(
e−(x−d)2/ε2

+ e−x
2/ε2

+ e−(x+d)2/ε2
)

. (6)

We assume the particle travels freely, and has a mass m,
and hence it’s evolution is governed by the operator

U(t) = exp(−ip2t/2mh̄), (7)

where p represent the operator for the x-component of the
momentum of the particle. Using the time-evolution gov-
erned by the above, the state of the particle, when it reaches
the screen after a time t, is given by

ψ(x , t) =
Ct√

3

(
e−(x−d)2/(ε2+ia) + e−x

2/(ε2+ia)

+e−(x+d)2/(ε2+ia)
)

, (8)

where a = 2h̄t/m = λD/π and Ct = ( 2
π(ε+ia/ε) )1/4. The

probability of the particle, hitting the screen at a position
x , is given by

|ψ(x , t)|2 =
|Ct |2

3
e−2x2/Ω

(
1 + e−2d2/Ω2 cosh(4xd/Ω)

+e−(d2−2xd)/Ω2 cos(2xd/a− d2/a)

+e−(d2+2xd)/Ω2 cos(2xd/a + d2/a)

+e−2d2/Ω2 cos(4xd/a)
)

, (9)

where Ω = ε2 + λ2D2/π2ε2, and is related to the expanded
width of the wave-packets. In the limit where the slits are
very narrow and the wave-packets spread much much wider
than d and overlap with each other strongly, i.e. Ω � d2,
the above can be approximated by

|ψ(x , t)|2 ≈ |Ct |2

3
e−2x2/Ω (1 + 2 cosh(4xd/Ω)

+4 cosh(2xd/Ω) cos(2xd/a)

+2 cos(4xd/a)) (10)

The above expression represents a 3-slit interference pattern
(see Fig. 2).

In the presence of a path-detector, the state after the
particle emerges from the triple slit, is be given by

〈x |ψ〉 =
C√

3

(
e−(x−d)2/ε2

|+〉+ e−x
2/ε2

|0〉+ e−(x+d)2/ε2

|−〉
)

,

(11)
which is just the position representation of (3). After trav-
elling to the screen, the probability of the particle hitting it
at a position x is given by

|ψ(x , t)|2 =
|Ct |2

3
e−2x2/Ω

(
1 + e−2d2/Ω2 cosh(4xd/Ω)

)
.

(12)

One can see, that the cosine terms, which represented in-
terference in (9), are missing in the above expression. Basi-
cally they are killed due to the orthogonality of |+〉, |0〉, |−〉.
The states |+〉, |0〉, |−〉 carry information about which slit
the particle passed through. So, it emerges that the stor-
ing of which-way information is enough to destroy interfer-
ence. Wave-particle duality in a 3-slit experiment has re-
cently been quantitatively stated by a new duality relation
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[28]. However, here our focus is, looking at the possibility
of quantum erasing in such an experiment, which is dealt
with in the following discussion.

III. QUANTUM ERASER

The three-state quantum path-detector may be thought
of as a pseudo-spin-1, whose z-component Sz has the eigen-
state |+〉, |0〉, |−〉. These states can also be written in terms
of the eigenstates of the x-component of this pseudo-spin
Sx, which we represent as | ↑〉, | →〉, | ↓〉. In this represen-
tation, the eigenstates of Sz look like

|+〉 =
1

2
| ↑〉+

1√
2
| →〉+

1

2
| ↓〉

|0〉 =
1√
2
| ↑〉 − 1√

2
| ↓〉

|−〉 =
1

2
| ↑〉 − 1√

2
| →〉+

1

2
| ↓〉 (13)

Using this, the state (3) can be written as

|ψ〉 =
1√
3

[
(
|ψ1〉

2
+
|ψ2〉√

2
+
|ψ3〉

2
)| ↑〉+ (

|ψ1〉√
2
− |ψ3〉√

2
)| →〉

+(
|ψ1〉

2
− |ψ2〉√

2
+
|ψ3〉

2
)| ↓〉

]
. (14)

It is quite obvious that the above state will not lead to an
interference pattern, since it is the same as (3). However,
if one were to measure the x-component of the pseudo-
spin, and detect the particle in correlation with the three
results of the pseudo-spin measurement, the following three
situations will arise.

〈↑ |ψ(t)〉 =
1√
3
U(t)

(
|ψ1〉

2
+
|ψ2〉√

2
+
|ψ3〉

2

)
〈↓ |ψ(t)〉 =

1√
3
U(t)

(
|ψ1〉

2
− |ψ2〉√

2
+
|ψ3〉

2

)
〈→ |ψ(t)〉 =

1√
3
U(t)

(
|ψ1〉√

2
− |ψ3〉√

2

)
(15)

The state 〈↑ |ψ(t)〉, for example, represents the state of
the particle hitting the screen, provided that the pseudo-
spin Sx has been found in the state | ↑〉. The same can be
represented in the position basis as follows

ψ↑(x , t)〉 =
1√
3

(
ψ1(x , t)

2
+
ψ2(x , t)√

2
+
ψ3(x , t)

2

)
ψ↓(x , t)〉 =

1√
3

(
ψ1(x , t)

2
− ψ2(x , t)√

2
+
ψ3(x , t)

2

)
ψ→(x , t)〉 =

1√
3

(
ψ1(x , t)√

2
− ψ3(x , t)√

2

)
(16)

Since ψ1(x , t),ψ2(x , t),ψ3(x , t) have already been worked
out in the preceding calculation, it is straightforward to show
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FIG. 2. Recovered interference pattern, given by |ψ↑(x , t)|2
(solid line) and the original 3-slit interference pattern, given
by (10) (dashed line). The two are clearly different. The
dotten line represents the lost interference in the presence of
which-way information, given by (12).

that

|ψ↑(x , t)|2 =
|Ct |2

3
e−2x2/Ω

(
1

2
+

1

2
cosh(4xd/Ω)

+
√

2 cosh(2xd/Ω) cos(2xd/a)

+
1

2
cos(4xd/a)

)
|ψ↓(x , t)|2 =

|Ct |2

3
e−2x2/Ω

(
1

2
+

1

2
cosh(4xd/Ω)

−
√

2 cosh(2xd/Ω) cos(2xd/a)

+
1

2
cos(4xd/a)

)
|ψ→(x , t)|2 =

|Ct |2

3
e−2x2/Ω (1− cos(4xd/a)) (17)

Clearly, |ψ↑(x , t)|2 in the above expression does represent a
3-slit interference. Thus we see that by detecting the par-
ticles in coincidence with the pseudo-spin state | ↑〉 erases
the which-path information and brings back the interfer-
ence. Quantum erasing is possible in 3-slit interference as
well. A careful look reveals that the interference given by
|ψ↑(x , t)|2 is different from the true 3-slit interference given
by (10), as can also be seen by plotting the two (see Fig.
2).

The question that arises now is, what basis should one
measure the pseudo-spin in, so that detecting particles on
the screen, in coincidence with one of the states of the basis,
would yield true 3-slit interference. Let us assume that the
basis states are |α〉, |β〉, |γ〉, and that coincident detection
of particles with |α〉 yields true unshifted 3-slit interference.
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This can happen only if

〈α|+〉 = 〈α|0〉 = 〈α|−〉 ≡ c . (18)

By normalization, |c | = 1/
√

3, and the state |α〉 can be

|α〉 =
1√
3

(|+〉+ |0〉+ |−〉). (19)

That normalized states |β〉, |γ〉 should be chosen such that
they are unbiased for the states |+〉, |0〉, |−〉, thus satisfying
the condition

|〈β|+〉|2 = |〈β|0〉|2 = |〈β|−〉|2 =
1

3

|〈γ|+〉|2 = |〈γ|0〉|2 = |〈γ|−〉|2 =
1

3
. (20)

Cube-roots of unity come in handy here, and the two states
can be chosen as

|β〉 =
1√
3

(e iπ/3|+〉 − |0〉+ e−iπ/3|−〉)

|γ〉 =
1√
3

(e−iπ/3|+〉 − |0〉+ e iπ/3|−〉) (21)

Using this, the state (3) can be written as

|ψ〉 =
1

3
[(|ψ1〉+ |ψ2〉+ |ψ3〉)|α〉

+(e iπ/3|ψ1〉 − |ψ2〉+ e−iπ/3|ψ3〉)|β〉

+(e−iπ/3|ψ1〉 − |ψ2〉+ e iπ/3|ψ3〉)|γ〉
]

. (22)

Particles hitting the screen can be divided into three
subensembles, depending on the state of the pseudo-spin
obtained. The states of the particle, correlated with
|α〉, |β〉, |γ〉, are ψα(x , t),ψβ(x , t),ψγ(x , t), respectively.
They can be represented as follows

ψα(x , t) =
1

3
(ψ1(x , t) + ψ2(x , t) + ψ3(x , t))

ψβ(x , t) =
1√
3

(
e

iπ
3 ψ1(x , t)− ψ2(x , t) + e

−iπ
3 ψ3(x , t)

)
ψγ(x , t) =

1√
3

(
e

−iπ
3 ψ1(x , t)− ψ2(x , t) + e

iπ
3 ψ3(x , t)

)
(23)

The three complementary interference patterns can then
be shown to have the form

|ψα(x , t)|2 =
|Ct |2

3
e−2x2/Ω 1

3
[1 + 2 cosh(4xd/Ω)

+4 cosh(2xd/Ω) cos(2xd/a)

+2 cos(4xd/a)]

|ψβ(x , t)|2 =
|Ct |2

3
e−2x2/Ω 1

3
[1 + 2 cosh(4xd/Ω)

+4 cosh(2xd/Ω) cos(2xd/a + π/3)

+2 cos(4xd/a + 2π/3)]

|ψγ(x , t)|2 =
|Ct |2

3
e−2x2/Ω 1

3
[1 + 2 cosh(4xd/Ω)

+4 cosh(2xd/Ω) cos(2xd/a− π/3)

+2 cos(4xd/a− 2π/3)] . (24)
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FIG. 3. Recovered interference pattern (unnormalized), given
by |ψα(x , t)|2 (solid line), that given by |ψβ(x , t)|2 (dashed
line) and that given by |ψγ(x , t)|2 (dot-dashed line).

Notice that all the three cases in (24) produce true, but
mutually shifted, 3-slit interference patterns. It implies that
detecting particles in coincidence with the state |α〉, |β〉
or |γ〉 constitutes quantum eraser for the 3-slit interference
experiment. The interference, which was lost because of
the path-detector states carrying which-way information, is
recovered after the path information is erased by reading
the path-detector in one of the states |α〉, |β〉, |γ〉.

IV. DISCUSSION

In the preceding analysis, we have shown that the concept
of quantum eraser can be extended to the case of 3-slit in-
terference. If the which-path information, of the interfering
particle, is stored in a quantum path-detector, the interfer-
ence is lost. By erasing the path information stored in the
quantum path-detector, the lost interference can be made
to come back.

In a typical implementation of quantum eraser for a 2-slit
interference experiment, the particles are detected in coinci-
dence with two orthogonal states of the path-detector. For
example, in a particular implementation with photons pass-
ing through a double-slit, they were detected in coincidence
with two orthogonal polarization states of the photon [21].
Both these states lead to recovery of true 2-slit interfer-
ence. We have shown that in the case of 3-slit interference
too, three complementary interference patterns can be re-
covered.

A quantum eraser for 3-slit interference will definitely be
harder to implement, as compared with 2-slit interference.
However, we feel that an earlier proposal for quantum eraser
for 2-slit interference using a modified Stern-Gerlach setup
[37], may be a good candidate for extending to 3-slit inter-
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ference.
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